This work contains a comparison between variational integrators and energy-momentum schemes for flexible multibody dynamics. In this connection, a specific “rotationless” formulation of flexible multibody dynamics is employed. Flexible components such as continuum bodies and geometrically exact beams and shells are discretized in space by using nonlinear finite element methods. The motion of the resulting discrete systems are governed by a uniform set of differential-algebraic equations (DAEs). This makes possible the application and comparison of previously developed structure-preserving methods for the numerical integration of the DAEs. In particular, we apply a specific variational integrator and an energy-momentum scheme. The performance of both integrators is assessed in the context of three representative numerical examples.

1.
Simo
,
J. C.
, and
Tarnow
,
N.
, 1992, “
The Discrete Energy-Momentum Method. Conserving Algorithms for Nonlinear Elastodynamics
,”
Z. Angew. Math. Phys.
0044-2275,
43
, pp.
757
792
.
2.
Gonzalez
,
O.
, and
Simo
,
J. C.
, 1996, “
On the Stability of Symplectic and Energy-Momentum Algorithms for Non-Linear Hamiltonian Systems With Symmetry
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
134
, pp.
197
222
.
3.
Bauchau
,
O. A.
, and
Bottasso
,
C. L.
, 1999, “
On the Design of Energy Preserving and Decaying Schemes for Flexible, Nonlinear Multi-Body Systems
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
169
, pp.
61
79
.
4.
Ibrahimbegović
,
A.
,
Mamouri
,
S.
,
Taylor
,
R. L.
, and
Chen
,
A. J.
, 2000, “
Finite Element Method in Dynamics of Flexible Multibody Systems: Modeling of Holonomic Constraints and Energy Conserving Integration Schemes
,”
Multibody Syst. Dyn.
1384-5640,
4
(
2–3
), pp.
195
223
.
5.
Géradin
,
M.
, and
Cardona
,
A.
, 2001,
Flexible Multibody Dynamics: A Finite Element Approach
,
Wiley
,
New York
.
6.
Lens
,
E.
, and
Cardona
,
A.
, 2007, “
An Energy Preserving/Decaying Scheme for Nonlinearly Constrained Multibody Systems
,”
Multibody Syst. Dyn.
1384-5640,
18
(
3
), pp.
435
470
.
7.
Wendlandt
,
J.
, 1997, “
Control and Simulation of Multibody Systems
,” Ph.D. thesis, University of California at Berkeley.
8.
Leyendecker
,
S.
,
Marsden
,
J. E.
, and
Ortiz
,
M.
, 2008, “
Variational Integrators For Constrained Dynamical Systems
,”
Z. Angew. Math. Mech.
0044-2267,
88
(
9
), pp.
677
708
.
9.
Marsden
,
J. E.
, and
West
,
M.
, 2001, “
Discrete Mechanics and Variational Integrators
,”
Acta Numerica
0962-4929,
10
, pp.
357
514
.
10.
Lew
,
A.
,
Marsden
,
J. E.
,
Ortiz
,
M.
, and
West
,
M.
, 2004, “
Variational Time Integrators
,”
Int. J. Numer. Methods Eng.
0029-5981,
60
, pp.
153
212
.
11.
Leyendecker
,
S.
,
Ober-Blöbaum
,
S.
,
Marsden
,
J. E.
, and
Ortiz
,
M.
, 2009, “
Discrete Mechanics and Optimal Control for Constrained Systems
,”
Opt. Control Appl. Methods
0143-2087, in press.
12.
Betsch
,
P.
, and
Steinmann
,
P.
, 2001, “
Constrained Integration of Rigid Body Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
191
, pp.
467
488
.
13.
Betsch
,
P.
, and
Leyendecker
,
S.
, 2006, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part II: Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
0029-5981,
67
(
4
), pp.
499
552
.
14.
Betsch
,
P.
, and
Uhlar
,
S.
, 2007, “
Energy-Momentum Conserving Integration of Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
17
(
4
), pp.
243
289
.
15.
Uhlar
,
S.
, and
Betsch
,
P.
, 2008, “
Conserving Integrators for Parallel Manipulators
,”
Parallel Manipulators
,
J. -H.
Ryu
, ed.,
I-Tech Education and Publishing
,
Vienna, Austria
, pp.
75
108
.
16.
Uhlar
,
S.
, and
Betsch
,
P.
, 2009, “
A Rotationless Formulation of Multibody Dynamics: Modeling of Screw Joints and Incorporation of Control Constraints
,”
Multibody Syst. Dyn.
1384-5640,
22
(
1
), pp.
69
95
.
17.
Betsch
,
P.
, and
Steinmann
,
P.
, 2002, “
Frame-Indifferent Beam Finite Elements Based Upon the Geometrically Exact Beam Theory
,”
Int. J. Numer. Methods Eng.
0029-5981,
54
, pp.
1775
1788
.
18.
Betsch
,
P.
, and
Steinmann
,
P.
, 2003, “
Constrained Dynamics of Geometrically Exact Beams
,”
Comput. Mech.
0178-7675,
31
, pp.
49
59
.
19.
Leyendecker
,
S.
,
Betsch
,
P.
, and
Steinmann
,
P.
, 2006, “
Objective Energy-Momentum Conserving Integration for the Constrained Dynamics of Geometrically Exact Beams
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
195
, pp.
2313
2333
.
20.
Betsch
,
P.
, and
Sänger
,
N.
, 2009, “
A Nonlinear Finite Element Framework for Flexible Multibody Dynamics: Rotationless Formulation and Energy-Momentum Conserving Discretization
,”
Multibody Dynamics: Computational Methods and Applications (Computational Methods in Applied Sciences)
,
C. L.
Bottasso
, ed.,
Springer-Verlag
,
Berlin
, Vol.
12
, pp.
119
141
.
21.
Betsch
,
P.
, and
Sänger
,
N.
, 2009, “
On the Use of Geometrically Exact Shells in a Conserving Framework for Flexible Multibody Dynamics
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
198
, pp.
1609
1630
.
22.
Betsch
,
P.
, and
Steinmann
,
P.
, 2002, “
Conservation Properties of a Time FE Method. Part III: Mechanical Systems With Holonomic Constraints
,”
Int. J. Numer. Methods Eng.
0029-5981,
53
, pp.
2271
2304
.
23.
Betsch
,
P.
, and
Steinmann
,
P.
, 2002, “
A DAE Approach to Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
8
, pp.
365
389
.
24.
Leyendecker
,
S.
,
Betsch
,
P.
, and
Steinmann
,
P.
, 2008, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part III: Flexible Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
19
(
1–2
), pp.
45
72
.
25.
García de Jalón
,
J.
, 2007, “
Twenty-Five Years of Natural Coordinates
,”
Multibody Syst. Dyn.
1384-5640,
18
(
1
), pp.
15
33
.
26.
Moser
,
J.
, and
Veselov
,
A. P.
, 1991, “
Discrete Versions of Some Classical Integrable Systems and Factorization of Matrix Polynomials
,”
Commun. Math. Phys.
0010-3616,
139
(
2
), pp.
217
243
.
27.
Antman
,
S. S.
, 2005,
Nonlinear Problems of Elasticity
, 2nd ed.,
Springer-Verlag
,
Berlin
.
28.
Simo
,
J. C.
, and
Fox
,
D. D.
, 1989, “
On a Stress Resultant Geometrically Exact Shell Model. Part I: Formulation and Optimal Parametrization
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
72
, pp.
267
304
.
29.
Marsden
,
J. E.
, 1992,
Lectures on Mechanics
,
Cambridge University Press
,
Cambridge, England
.
30.
Wendlandt
,
J. M.
, and
Marsden
,
J. E.
, 1997, “
Mechanical Integrators Derived From a Discrete Variational Principle
,”
Physica D
0167-2789,
106
, pp.
223
246
.
31.
Gonzalez
,
O.
, 1999, “
Mechanical Systems Subject to Holonomic Constraints: Differential-Algebraic Formulations and Conservative Integration
,”
Physica D
0167-2789,
132
, pp.
165
174
.
32.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
, 2006,
Geometric Numerical Integration
, 2nd ed.,
Springer-Verlag
,
Berlin
.
33.
Leimkuhler
,
B.
, and
Reich
,
S.
, 2004,
Simulating Hamiltonian Dynamics
,
Cambridge University Press
,
Cambridge, England
.
34.
Betsch
,
P.
, and
Hesch
,
C.
, 2007, “
Energy-Momentum Conserving Schemes for Frictionless Dynamic Contact Problems. Part I: NTS Method
,”
IUTAM Symposium on Computational Methods in Contact Mechanics
,
P.
Wriggers
and
U.
Nackenhorst
, eds.,
Springer-Verlag
,
Berlin
, Vol.
3
, pp.
77
96
.
35.
Gonzalez
,
O.
, 1996, “
Time Integration and Discrete Hamiltonian Systems
,”
J. Nonlinear Sci.
0938-8794,
6
, pp.
449
467
.
36.
Bottasso
,
C. L.
,
Bauchau
,
O. A.
, and
Cardona
,
A.
, 2007, “
Time-Step-Size-Independent Conditioning and Sensitivity to Perturbations in the Numerical Solution of Index Three Differential Algebraic Equations
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
29
(
1
), pp.
397
414
.
37.
Bottasso
,
C. L.
,
Dopico
,
D.
, and
Trainelli
,
L.
, 2008, “
On the Optimal Scaling of Index Three DAEs in Multibody Dynamics
,”
Multibody Syst. Dyn.
1384-5640,
19
(
1–2
), pp.
3
20
.
38.
Hairer
,
E.
, and
Wanner
,
G.
, 1996,
Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems
, 2nd ed.,
Springer-Verlag
,
Berlin
.
39.
Betsch
,
P.
, 2005, “
The Discrete Null Space Method for the Energy Consistent Integration of Constrained Mechanical Systems. Part I: Holonomic Constraints
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
194
(
50–52
), pp.
5159
5190
.
40.
Blajer
,
W.
, and
Kołodziejczyk
,
K.
, 2005, “
A Computational Framework for Control Design of Rotary Cranes
,”
Proceedings of ECCOMAS Thematic Conference on Advances in Computational Multibody Dynamics (CD-ROM)
,
J. M.
Goicolea
,
J.
Cuadrado
, and
J. C.
Garcia Orden
, eds., Madrid, Spain.
41.
Uhlar
,
S.
, and
Betsch
,
P.
, 2007, “
On the Rotationless Formulation of Multibody Dynamics and Its Conserving Numerical Integration
,”
Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics
,
C. L.
Bottasso
,
P.
Masarati
, and
L.
Trainelli
, eds.,
Politecnico di Milano
,
Milano, Italy
.
42.
Puso
,
M. A.
, 2004, “
A 3D Mortar Method for Solid Mechanics
,”
Int. J. Numer. Methods Eng.
0029-5981,
59
, pp.
315
336
.
43.
Hesch
,
C.
, and
Betsch
,
P.
, 2009, “
Transient Three-Dimensional Domain Decomposition Problems: Frame-Indifferent Mortar Constraints and Conserving Integration
,”
Int. J. Numer. Methods Eng.
0029-5981,
82
, pp.
329
358
.
44.
Hesch
,
C.
, and
Betsch
,
P.
, 2009, “
A Mortar Method for Energy-Momentum Conserving Schemes in Frictionless Dynamic Contact Problems
,”
Int. J. Numer. Methods Eng.
0029-5981,
77
(
10
), pp.
1468
1500
.
45.
Groß
,
M.
,
Betsch
,
P.
, and
Steinmann
,
P.
, 2005, “
Conservation Properties of a Time FE Method. Part IV: Higher Order Energy and Momentum Conserving Schemes
,”
Int. J. Numer. Methods Eng.
0029-5981,
63
, pp.
1849
1897
.
46.
Simo
,
J. C.
, and
Tarnow
,
N.
, 1994, “
A New Energy and Momentum Conserving Algorithm for the Nonlinear Dynamics of Shells
,”
Int. J. Numer. Methods Eng.
0029-5981,
37
, pp.
2527
2549
.
47.
Chróścielewski
,
J.
, and
Witkowski
,
W.
, 2009, “
Discrepancies of Energy Values in Dynamics of Three Intersecting Plates
,”
Int. J. for Numer. Methods in Biomedical Eng.
, in press.
48.
Betsch
,
P.
, and
Siebert
,
R.
, 2009, “
Rigid Body Dynamics in Terms of Quaternions: Hamiltonian Formulation and Conserving Numerical Integration
,”
Int. J. Numer. Methods Eng.
0029-5981,
79
(
4
), pp.
444
473
.
You do not currently have access to this content.