Interactions between the oscillations of piezoceramic transducer and the mechanism of its excitation—the generator of the electric current of limited power-supply—are analyzed in this paper. In practical situations, the dynamics of the forcing function on a vibrating system cannot be considered as given a priori, and it must be taken as a consequence of the dynamics of the whole system. In other words, the forcing source has limited power, as that provided by a dc motor for an example, and thus its own dynamics is influenced by that of the vibrating system being forced. This increases the number of degrees of freedom of the problem, and it is called a nonideal problem. In this work, we present certain phenomena as Sommerfeld effect, jump, saturation, and stability, through the influences of the parameters of the governing equations motion.

1.
Kononenko
,
V. O.
, 1969,
Vibrating Systems With Limited Power Supply
,
Iliffe Books
,
London
.
2.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
, 1979,
Nonlinear Oscillations
,
Wiley
,
New York
.
3.
Balthazar
,
J. M.
,
Mook
,
D. T.
,
Weber
,
H. I.
,
Brasil
,
R. M. L. R. F.
, 2003, “
An Overview on Non-Ideal Vibrations
,”
Meccanica
0025-6455,
38
, pp.
613
621
.
4.
Balthazar
,
J. M.
,
Mook
,
D. T.
,
Weber
,
H. I.
,
Brasil
,
R. M. L. R. F.
,
Fenili
,
A.
,
Belato
,
D.
,
Felix
,
J. L. P.
,
Garzeri
,
J.
, 2004, “
Review on New Vibration Issues Due to Non-Ideal Energy Sources
,”
F. E.
Udwadia
,
H. I.
Weber
, and
G.
Leitman
, eds.,
Stability and Control: Theory. Methods and Applications
(22),
Chapman and Hallick
,
London
, pp.
237
258
.
5.
Palacios Felix
,
J. L.
,
Balthazar
,
J. M.
,
Brasil
,
R. M. L. R. F.
, 2002, “
On Non-Ideal and Nonlinear Portal Frame Dynamics Analysis Using Bogoliubov Averaging Method
,”
J. Braz. Soc. Mech. Sci.
0100-7386,
24
, pp.
257
265
.
6.
Bolla
,
M.
,
Balthazar
,
J. M.
,
Felix
,
J. L. P.
, and
Mook
,
D. T.
, 2007, “
On an Approximate Analytical Solution to a Nonlinear Vibrating Problem, Excited by a Nonideal Motor
,”
Nonlinear Dyn.
0924-090X,
50
(
4
), pp.
841
847
.
7.
Dantas
,
M. J. H.
, and
Balthazar
,
J. M.
, 2007, “
On the Existence and Stability of Periodic Orbits in Non-Ideal Problems: General results
,”
ZAMP
0044-2275,
58
, pp.
940
956
.
8.
Balthazar
,
J. M.
, and
Felix
,
J. L. P.
, 2004, “
Short Comments on Self-Synchronization of Two Non-Ideal Sources Supported by a Flexible Portal Frame Structure
,”
J. Vib. Control
1077-5463,
10
(
12
), pp.
1739
1748
.
9.
Balthazar
,
J. M.
,
Brasil
,
R. M. L. R. F.
,
Grazeri
,
F.
, 2004, “
On Non-Ideal Simple Portal Frame Structural Model: Experimental. Results Under a Non-Ideal Excitation
,”
Applied Mechanics and Materials
,
1-2
, pp.
51
58
.
10.
Krasnopolkaya
,
T. S.
, and
Shevts
,
A. Y.
, 1993, “
Chaos in Vibrating Systems With Limited Power Supply
,”
Chaos
1054-1500,
3
, pp.
387
395
.
11.
Auld
,
B. A.
, 1973,
Acoustic Fields and Waves in Solids
,
Wiley
,
New York
.
12.
Zharii
,
O. Y.
, 1992, “
Normal Mode Expansions in Dynamic Electroelasticity and Their Application to Electromechanical Energy Conversion
,”
J. Acoust. Soc. Am.
0001-4966,
92
(
1
), pp.
57
68
.
13.
Felix
,
J. L.
,
Balthazar
,
J. M.
,
Brasil
,
R. M. R. F. L.
, 2004, “
On Saturation Control of a Non-Ideal Vibrating portal Frame Foundation Type Shear–Building
,”
J. Vib. Control
1077-5463,
10
(
12
), pp.
1739
1748
.
You do not currently have access to this content.