Algorithms for planning quasistatic attitude maneuvers based on the Jacobian of the forward kinematic mapping of fully-reversed (FR) sequences of rotations are proposed in this paper. An FR sequence of rotations is a series of finite rotations that consists of initial rotations about the axes of a body-fixed coordinate frame and subsequent rotations that undo these initial rotations. Unlike the Jacobian of conventional systems such as a robot manipulator, the Jacobian of the system manipulated through FR rotations is a null matrix at the identity, which leads to a total breakdown of the traditional Jacobian formulation. Therefore, the Jacobian algorithm is reformulated and implemented so as to synthesize an FR sequence for a desired rotational displacement. The Jacobian-based algorithm presented in this paper identifies particular six-rotation FR sequences that synthesize desired orientations. We developed the single-step and the multiple-step Jacobian methods to accomplish a given task using six-rotation FR sequences. The single-step Jacobian method identifies a specific FR sequence for a given desired orientation and the multiple-step Jacobian algorithm synthesizes physically feasible FR rotations on an optimal path. A comparison with existing algorithms verifies the fast convergence ability of the Jacobian-based algorithm. Unlike closed-form solutions to the inverse kinematics problem, the Jacobian-based algorithm determines the most efficient FR sequence that yields a desired rotational displacement through a simple and inexpensive numerical calculation. The procedure presented here is useful for those motion planning problems wherein the Jacobian is singular or null.

1.
Li
,
J.
,
Koh
,
S. K.
,
Ananthasuresh
,
G. K.
, and
Ananthakrishnan
,
S.
, 2001, “
A Novel Attitude Control Technique for Miniature Spacecraft
,”
MEMS Symposium, Vol. 1 CD-ROM Proceedings of the MEMS Symposium at the 2001 ASME International Mechanical Engineering Conference and Exposition
,
New York
, Nov. 11–16.
2.
Koh
,
S. K.
,
Ostrowski
,
J. P.
, and
Ananthasuresh
,
G. K.
, 2002, “
Control of Micro-Satellite Orientation Using Bounded-Input, Fully-Reversed MEMS Actuators
,”
Int. J. Robot. Res.
0278-3649,
21
(
5–6
), pp.
591
605
.
3.
Koh
,
S. K.
,
Ananthasuresh
,
G. K.
, and
Croke
,
C.
, 2004, “
Analysis of Fully-Reversed Sequences of Non-Commutative Free-Body Rotations
,”
ASME J. Mech. Des.
1050-0472,
126
(
4
), pp.
609
616
.
4.
Koh
,
S. K.
, and
Ananthasuresh
,
G. K.
, 2004, “
Inverse Kinematics of an Untethered Rigid Body Undergoing a Sequence of Forward and Reverse Rotations
,”
ASME J. Mech. Des.
1050-0472,
126
(
5
), pp.
813
821
.
5.
Bharadwaj
,
S.
,
Osipchuk
,
M.
,
Mease
,
K. D.
, and
Park
,
F. C.
, 1998, “
Geometry and Inverse Optimality of Global Attitude Stabilization
,”
J. Guid. Control Dyn.
0731-5090,
21
(
6
), pp.
930
939
.
6.
Bloch
,
A. M.
,
Krishnaprasad
,
P. S.
,
Marsden
,
J. E.
, and
Sanchez de Alvarez
,
G.
, 1992, “
Stabilization of Rigid Body Dynamics by Internal and External Torques
,”
Automatica
0005-1098,
28
, pp.
745
756
.
7.
Bullo
,
F.
,
Murray
,
R. M.
, and
Sarti
,
A.
, 1995, “
Control on the Sphere and Reduced Attitude Stabilization
,”
Nonlinear Control Systems Design Symposium
, Also Technical Report CIT/CDS 95-005, available electronically via http://avalon.caltech.edu/cdshttp://avalon.caltech.edu/cds
8.
Koditschek
,
D. E.
, 1989, “
The Application of Total Energy as a Lyapunov Function for Mechanical Control Systems
,”
Dynamics and Control of Multibody Systems
,
P. S.
Krishnaprasad
,
J. E.
Marsden
, and
J. C.
Simo
, eds.,
AMS
,
Providence, RI
, Vol.
97
, pp.
131
157
.
9.
Wen
,
J. T.-Y.
, and
Kreutz-Delgado
,
K.
, 1991, “
The Attitude Control Problem
,”
IEEE Trans. Autom. Control
0018-9286,
36
(
10
), pp.
1148
1162
.
10.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
, 1993,
A Mathematical Introduction to Robotic Manipulation
,
CRC
,
Boca Raton, FL
.
11.
Stein
,
D.
,
Scheinerman
,
E. R.
, and
Chirikjian
,
G. S.
, 2003, “
Mathematical Models of Binary Spherical-Motion Encoders
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
8
(
2
), pp.
234
244
.
12.
Chirikjian
,
G. S.
, and
Kyatkin
,
A. B.
, 2000,
Engineering Application of Noncommutative Harmonic Analysis
,
CRC
,
Boca Raton, FL
.
13.
2004, MATLAB, Numerical Analysis Software from Mathworks, Inc. Woburn, MA, www.mathworks.comwww.mathworks.com
14.
Marsden
,
J. E.
, and
Hoffman
,
M. J.
, 1993,
Elementary Classical Analysis
,
W. H. Freeman and Company
,
New York
.
15.
Sastry
,
S.
, and
Marsden
,
J. E.
, 2004,
Nonlinear Systems: Analysis, Stability and Control
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.