A generalized damped Beck’s column under pulsating actions is considered. The nonlinear partial integrodifferential equations of motion and the associated boundary conditions, expanded up to cubic terms, are tackled through a perturbation approach. The multiple scales method is applied to the continuous model in order to obtain the bifurcation equations in the neighborhood of a Hopf bifurcation point in primary parametric resonance. This codimension-2 bifurcation entails two control variables, namely, the amplitude of the static and dynamic components of the follower force, playing the role of detuning and bifurcation parameters, respectively. In the postcritical analysis bifurcation diagrams and relevant phase portraits are examined. Two bifurcation paths associated with specific values of the follower force static component are discussed and the birth of new stable period-2 subharmonic motion is observed.
Skip Nav Destination
e-mail: achille.paolone@uniroma1.it
e-mail: francesco.romeo@uniroma1.it
e-mail: mvasta@unich.it
Article navigation
January 2009
Research Papers
Parametric Resonance of Hopf Bifurcation in a Generalized Beck’s Column
Achille Paolone,
Achille Paolone
Professor
Dipartimento di Ingegneria Strutturale e Geotecnica,
e-mail: achille.paolone@uniroma1.it
Università di Roma “La Sapienza”,
Via Eudossiana 18, 00184 Roma, Italy
Search for other works by this author on:
Francesco Romeo,
Francesco Romeo
Associate Professor
Dipartimento di Ingegneria Strutturale e Geotecnica,
e-mail: francesco.romeo@uniroma1.it
Università di Roma “La Sapienza”,
Via Gramsci 53, 00197 Roma, Italy
Search for other works by this author on:
Marcello Vasta
Marcello Vasta
Associate Professor
Dipartimento di PRICOS,
e-mail: mvasta@unich.it
Università “G. D’Annunzio” di Chieti-Pescara
, Viale Pindaro 42, 65127 Pescara, Italy
Search for other works by this author on:
Achille Paolone
Professor
Dipartimento di Ingegneria Strutturale e Geotecnica,
Università di Roma “La Sapienza”,
Via Eudossiana 18, 00184 Roma, Italye-mail: achille.paolone@uniroma1.it
Francesco Romeo
Associate Professor
Dipartimento di Ingegneria Strutturale e Geotecnica,
Università di Roma “La Sapienza”,
Via Gramsci 53, 00197 Roma, Italye-mail: francesco.romeo@uniroma1.it
Marcello Vasta
Associate Professor
Dipartimento di PRICOS,
Università “G. D’Annunzio” di Chieti-Pescara
, Viale Pindaro 42, 65127 Pescara, Italye-mail: mvasta@unich.it
J. Comput. Nonlinear Dynam. Jan 2009, 4(1): 011003 (8 pages)
Published Online: November 11, 2008
Article history
Received:
July 25, 2007
Revised:
March 26, 2008
Published:
November 11, 2008
Citation
Paolone, A., Romeo, F., and Vasta, M. (November 11, 2008). "Parametric Resonance of Hopf Bifurcation in a Generalized Beck’s Column." ASME. J. Comput. Nonlinear Dynam. January 2009; 4(1): 011003. https://doi.org/10.1115/1.3007905
Download citation file:
Get Email Alerts
Cited By
Sobolev-Type Nonlinear Hilfer Fractional Differential Equations With Control: Approximate Controllability Exploration
J. Comput. Nonlinear Dynam (November 2024)
Application of Laminate Theory to Plate Elements Based on Absolute Nodal Coordinate Formulation
J. Comput. Nonlinear Dynam (November 2024)
Related Articles
Beyond Perturbation: Introduction to the Homotopy Analysis Method
Appl. Mech. Rev (September,2004)
Localization-Induced Band and Cohesive Model
J. Appl. Mech (December,2000)
Thermal Ignition in a Reactive Viscous Flow Through a Channel Filled With a Porous Medium
J. Heat Transfer (June,2006)
Energy Pumping in Nonlinear Mechanical Oscillators: Part I—Dynamics of the Underlying Hamiltonian Systems
J. Appl. Mech (January,2001)
Related Proceedings Papers
Related Chapters
Two-Dimension Simulation of a Red Blood Cell Partitioning in Microvascular Bifurcation
International Conference on Software Technology and Engineering (ICSTE 2012)
Dynamic Behavior in a Singular Delayed Bioeconomic Model
International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)
Deformation and Stability of Gold/Polysilicon Layered MEMS Plate Structures Subjected to Thermal Loading
Mechanical Properties of Structural Films