This study presents fractional order filters to enhance the performance of the conventional linear quadratic regulator (LQR) method for optimal robust control of a simple civil structure. The introduced filters modify the state variables fed back to the constant gain controller. Four combinations of fractional order filter and LQR are considered and optimized based on a new performance criterion defined in the paper. Introducing fractional order filters is shown to considerably improve the results for both the artificially generated ground motions and previously recorded earthquake data.
Issue Section:
Control
1.
Soong
, T. T.
, 1990, Active Structural Control: Theory and Practice
, Longman Scientific and Technical, Essex
, England
.2.
Yang
, J. N.
, Li
, Z.
, and Vongchavalitkul
, S.
, 1994, “Generalization of Optimal Control Theory: Linear and Nonlinear Control
,” J. Eng. Mech.
0733-9399, 120
, pp. 266
–283
.3.
Chang
, C. C.
, and Henry
, T. Y.
, 1994, “Instantaneous Optimal Control of Building Frames
,” J. Struct. Eng.
0733-9445, 120
, pp. 1307
–1325
.4.
Ankireddi
, S.
, and Yang
, H. T. Y.
, 1997, “Multiple Objective LQG Control of Wind-Excited Buildings
,” J. Struct. Eng.
0733-9445, 123
, pp. 943
–951
.5.
Guoping
, C.
, and Jinzhi
, H.
, 2002, “Optimal Control Method for Seismically Excited Building Structures With Time-Delay in Control
,” J. Eng. Mech.
0733-9399, 128
, pp. 602
–612
.6.
Ramallo
, J. C.
, Johnson
, E. A.
, and Spencer
, B. F.
, Jr., 2002, “‘Smart’ Base Isolation Systems
,” J. Eng. Mech.
0733-9399, 128
, pp. 540
–551
.7.
Adeli
, H.
, and Kim
, H.
, 2004, “Wavelet-Hybrid Feedback Least Mean Square Algorithm for Robust Control of Structures
,” J. Struct. Eng.
0733-9445, 130
, pp. 128
–137
.8.
Wang
, S.-G.
, 2004, “Linear Quadratic Gaussian-Alpha Control With Relative Stability and Gain Parameter for the Structural Benchmark Problems
,” J. Eng. Mech.
0733-9399, 130
, pp. 511
–517
.9.
Debnath
, L.
, 2004, “A Brief Historical Introduction to Fractional Calculus
,” Int. J. Math. Educ. Sci. Technol.
, 35
(4
), pp. 487
–501
.10.
Magin
, R. L.
, 2004, “Fractional Calculus in Bioengineering
,” Crit. Rev. Biomed. Eng.
0278-940X, 32
, pp. 1
–377
.11.
Chen
, Y.
, Xue
, D.
, and Dou
, H.
, 2004, “Fractional Calculus and Biomimetic Control
,” Proceedings of the First IEEE International Conference on Robotics and Biomimetics (RoBio04)
, IEEE
, Shengyang, China
, pp. 901
-906
.12.
Lurie
, B. J.
, 1994, “Three-Parameter Tunable Tilt-Integral-Derivative (TID) Controller
,” U.S. Patent No. 5,371,670.13.
Podlubny
, I.
, 1999, “Fractional-Order Systems and PIλ Dμ-Controllers
,” IEEE Trans. Autom. Control
0018-9286, 44
, pp. 208
–214
.14.
Oustaloup
, A.
, Mathieu
, B.
, and Lanusse
, P.
, 1995, “The CRONE Control of Resonant Plants: Application to a Flexible Transmission
,” Eur. J. Control
0947-3580, 1
, pp. 113
–121
.15.
Oustaloup
, A.
, Moreau
, X.
, and Nouillant
, M.
, 1996, “The CRONE Suspension
,” Control Eng. Pract.
0967-0661, 4
, pp. 1101
–1108
.16.
Raynaud
, H.
, and Zergaïnoh
, A.
, 2000, “State-Space Representation for Fractional Order Controllers
,” Automatica
0005-1098, 36
, pp. 1017
–1021
.17.
Manabe
, S.
, 1960, “The Non-Integer Integral and its Application to Control Systems
,” JIEE (Japanese Institute of Electrical Engineers) Journal
, 80
, pp. 589
–597
.18.
Manabe
, S.
, 1961, “The Non-Integer Integral and Its Application to Control Systems
,” ETJ of Japan
, 6
, pp. 83
–87
.19.
Oustaloup
, A.
, 1981, “Fractional Order Sinusoidal Oscilators: Optimization and Their Use in Highly Linear FM Modulators
,” IEEE Trans. Circuits Syst.
0098-4094, 28
, pp. 1007
–1009
.20.
Axtell
, M.
, and Bise
, E. M.
, 1990, “Fractional Calculus Applications in Control Systems
,” in Proceedings of the IEEE 1990 National Aerospace and Electronics Conference
, New York
, pp. 563
–566
.21.
Vinagre
, B. M.
, and Chen
, Y.
, 2002, “Lecture Notes on Fractional Calculus Applications in Automatic Control and Robotics
,” The 41st IEEE CDC2002 Tutorial Workshop No. 2
, Vinagre
, B. M.
, and Chen
, Y.
eds., Las Vegas, NV
, pp. 1
–310
(URL: http://mechatronics.ece.usu.edu/foc/cdc02_tw2_ln.pdfhttp://mechatronics.ece.usu.edu/foc/cdc02_tw2_ln.pdf).22.
Tenreiro Machado
J. A.
(Guest Editor), 2002, “Special Issue on Fractional Calculus and Applications
,” Nonlinear Dyn.
0924-090X, 29
, pp. 1
–385
.23.
Ortigueira
M. D.
and Tenreiro Machado
J. A. T.
(Guest Editors), 2003, “Special Issue on Fractional Signal Processing and Applications
,” Signal Process.
0165-1684, 83
(11
), pp. 2285
–2480
.24.
Xue
, D.
, and Chen
, Y.
, 2002, “A Comparative Introduction of Four Fractional Order Controllers
,” Proceedings of the Fourth IEEE World Congress on Intelligent Control and Automation (WCICA02)
, IEEE
, Shanghai, China
, pp. 3228
–3235
.25.
Chen
, Y.
, 2006, “Ubiquitous Fractional Order Controls?
,” Proceedings of the Second IFAC Symposium on Fractional Derivatives and Applications (IFAC FDA06)
, Porto
, Portugal
, July 19–21, pp. 1
–12
.26.
Xue
, D.
, Zhao
, C. N.
, and Chen
, Y. Q.
, 2006, “Fractional Order PID Control of a dc-Motor With an Elastic Shaft: A Case Study
,” Proceedings of the American Control Conference
, Minneapolis, MN
, pp. 3182
–3187
.27.
Lorenzo
, C. F.
, and Hartley
, T. T.
, 2000, “Initialized Fractional Calculus
,” Int. J. Appl. Math.
, 3
, pp. 249
–265
.28.
Lorenzo
, C. F.
, and Hartley
, T. T.
, 2007, “Initialization of Fractional Differential Equations Background and Theory
,” in International Design Engineering Technical Conferences/Computers and Information in Engineering Conference (IDETC/CIE 2007)
, ASME
, Las Vegas
.29.
Crandall
, S. H.
, and Mark
, W. D.
, 1963, “Random Vibration in Mechanical Systems
,” Academic
, New York
.30.
Caputo
, M.
, 1967, “Linear Models of Dissipation Whose q is Almost Frequency Independent-II
,” Geophys. J. R. Astron. Soc.
0016-8009, 13
, pp. 529
–539
.31.
Podlubny
, I.
, 1999, Fractional Differential Equations
, Academic
, New York
.32.
Oustaloup
, A.
, Levron
, F.
, Nanot
, F.
, and Mathieu
, B.
, 2000, “Frequency Band Complex Noninteger Differentiator: Characterization and Synthesis
,” IEEE Trans. Circuits Syst., I: Fundam. Theory Appl.
1057-7122, 47
, pp. 25
–40
.33.
Xue
, D.
, Zhao
, C. N.
, and Chen
, Y. Q.
, 2006, “A Modified Approximation Method of Fractional Order System
,” in Proceedings of 2006 IEEE Conference on Mechatronics and Automation
, Luoyang, China
, pp. 1043
–1048
.34.
Xue
, D.
, and Chen
, Y.
, 2007, Solving Control Related Mathematic Problems in Matlab
, Tsinghua University Press
, Beijing, China
.35.
Chen
, Y.
, Vinagre
, B. M.
, and Podlubny
, I.
, 2004, “Continued Fraction Expansion Approaches to Discretizing Fractional Order Derivatives: An Expository Review
,” Nonlinear Dyn.
0924-090X, 38
, pp. 155
–170
.36.
Soong
, T. T.
, and Grigoriu
, M.
, 1993, Random Vibration of Mechanical and Structural Systems
, Prentice-Hall
, Englewood Cliffs, NJ
.Copyright © 2008
by American Society of Mechanical Engineers
You do not currently have access to this content.