Graphical Abstract Figure

This work develops a novel method to carry out the discrete Kalman filter algorithm for two broad types of linear constant-coefficient Caputo fractional differential equations (FDEs), namely multi-term FDEs and multi-order system of FDEs. Firstly, the non-trivial closed-form Laplace-domain solutions are obtained for the FDEs under consideration. Taking the inverse Laplace transform then yields the time-domain representation of solutions involving the fundamental matrix Φ(t) and convolution integral of the Φ(t)-dependent function Ψ(t) with the known forcing f(t). The matrix Φ(t) and thereafter the function Ψ(t) are computed numerically. Subsequently, the time-domain discretization of these solutions is achieved through a systematic procedure, which makes them readily amenable to the discrete Kalman filter algorithm. The non-local nature of fractional-order operators makes such discretization challenging. It is worth mentioning that the time-domain representation of solutions plays the central role in obtaining the discretization. Finally, the robustness of the proposed strategy is tested using a variety of examples. Despite huge process and measurement noise, the results indicate a very good match between the true and the Kalman filter estimated states. A salient feature of the present work is that the classical discrete Kalman filter algorithm is implemented without any modifications, which guarantees optimal performance.

Graphical Abstract Figure

This work develops a novel method to carry out the discrete Kalman filter algorithm for two broad types of linear constant-coefficient Caputo fractional differential equations (FDEs), namely multi-term FDEs and multi-order system of FDEs. Firstly, the non-trivial closed-form Laplace-domain solutions are obtained for the FDEs under consideration. Taking the inverse Laplace transform then yields the time-domain representation of solutions involving the fundamental matrix Φ(t) and convolution integral of the Φ(t)-dependent function Ψ(t) with the known forcing f(t). The matrix Φ(t) and thereafter the function Ψ(t) are computed numerically. Subsequently, the time-domain discretization of these solutions is achieved through a systematic procedure, which makes them readily amenable to the discrete Kalman filter algorithm. The non-local nature of fractional-order operators makes such discretization challenging. It is worth mentioning that the time-domain representation of solutions plays the central role in obtaining the discretization. Finally, the robustness of the proposed strategy is tested using a variety of examples. Despite huge process and measurement noise, the results indicate a very good match between the true and the Kalman filter estimated states. A salient feature of the present work is that the classical discrete Kalman filter algorithm is implemented without any modifications, which guarantees optimal performance.

Close modal

Abstract

This work aims to develop novel strategies to carry out Kalman filtering for two broad classes of linear constant-coefficient fractional differential equations (FDEs) involving Caputo fractional derivatives. In the first part of this work, the closed-form solutions for such FDEs are obtained in the Laplace domain, followed by their time-domain representation involving the fundamental matrix Φ(t) and the convolution integral of the Φ(t)-dependent function Ψ(t) with the known forcing f(t). Moreover, the components of Ψ(t) are determined to depend on those of Φ(t) through problem-specific fractional-order integral equations. The specific structure of the FDEs being studied presents a notable challenge in deriving Laplace domain solutions. Nevertheless, the subsequent time-domain representation of these solutions makes them amenable to the well-known Kalman filtering. In the second part, we achieved a systematic time-domain discretization of the solutions for these FDEs and applied the discrete Kalman filter to the resulting set of discretized equations. The efficacy of this work is evident from the successful application of the Kalman filter to a variety of FDEs. Consistently excellent results have been obtained in all the cases.

References

1.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Basic Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
2.
Hotop
,
H.-J.
,
1993
, “
Recent Developments in Kalman Filtering With Applications in Navigation
,”
Adv. Electron. Electron Phys.
,
85
, pp.
1
75
.10.1016/S0065-2539(08)60144-4
3.
Grewal
,
M. S.
, and
Andrews
,
A. P.
,
2010
, “
Applications of Kalman Filtering in Aerospace 1960 to the Present [Historical Perspectives]
,”
IEEE Control Syst. Mag.
,
30
(
3
), pp.
69
78
.10.1109/MCS.2010.936465
4.
Auger
,
F.
,
Hilairet
,
M.
,
Guerrero
,
J. M.
,
Monmasson
,
E.
,
Orlowska-Kowalska
,
T.
, and
Katsura
,
S.
,
2013
, “
Industrial Applications of the Kalman Filter: A Review
,”
IEEE Trans. Ind. Electron.
,
60
(
12
), pp.
5458
5471
.10.1109/TIE.2012.2236994
5.
Munoz
,
S.
,
Urda
,
P.
,
Yu
,
X.
,
Mikkola
,
A.
, and
Escalona
,
J. L.
,
2023
, “
Real-Time Measurement of Track Irregularities Using an Instrumented Axle and Kalman Filtering Techniques
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
11
), p.
111005
.10.1115/1.4063339
6.
Hun
,
L. C.
,
Yeng
,
O. L.
,
Sze
,
L. T.
, and
Chet
,
K. V.
,
2016
, “
Kalman Filtering and Its Real-Time Applications
,” Real-Time Systems, BoD—Books on Demand,
IntechOpen
, Rijeka, Croatia, pp.
93
116
.10.5772/62352
7.
Urrea
,
C.
, and
Agramonte
,
R.
,
2021
, “
Kalman Filter: Historical Overview and Review of Its Use in Robotics 60 Years After Its Creation
,”
J. Sens.
,
2021
(
1
), p.
9674015
.10.1155/2021/9674015
8.
McGee
,
L. A.
, and
Schmidt
,
S. F.
,
1985
, “
Discovery of the Kalman Filter as a Practical Tool for Aerospace and Industry
,” NASA, Washington, DC, Technical Report No.
NASA-TM-86847
. https://ntrs.nasa.gov/api/citations/19860003843/downloads/19860003843.pdf
9.
Brown
,
R. G.
, and
Hwang
,
P. Y.
,
1992
,
Introduction to Random Signals and Applied Kalman Filtering
, Vol.
3
,
Wiley
,
New York
.
10.
Sierociuk
,
D.
, and
Dzieliński
,
A.
,
2006
, “
Fractional Kalman Filter Algorithm for the States, Parameters and Order of Fractional System Estimation
,”
Int. J. Appl. Math. Comput. Sci.
,
16
(
1
), pp.
129
140
.http://matwbn.icm.edu.pl/ksiazki/amc/amc16/amc1619.pdf
11.
Najar
,
S.
,
Abdelkrim
,
M. N.
,
Abdelhamid
,
M.
, and
Aoun
,
M.
,
2009
, “
Discrete Fractional Kalman Filter
,”
IFAC Proc. Vol.
,
42
(
19
), pp.
520
525
.10.3182/20090921-3-TR-3005.00090
12.
Sierociuk
,
D.
,
Tejado
,
I.
, and
Vinagre
,
B. M.
,
2011
, “
Improved Fractional Kalman Filter and Its Application to Estimation Over Lossy Networks
,”
Signal Process.
,
91
(
3
), pp.
542
552
.10.1016/j.sigpro.2010.03.014
13.
Nosrati
,
K.
, and
Shafiee
,
M.
,
2018
, “
Kalman Filtering for Discrete-Time Linear Fractional-Order Singular Systems
,”
IET Control Theory Appl.
,
12
(
9
), pp.
1254
1266
.10.1049/iet-cta.2017.0898
14.
Garrappa
,
R.
,
Kaslik
,
E.
, and
Popolizio
,
M.
,
2019
, “
Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial
,”
Mathematics
,
7
(
5
), p.
407
.10.3390/math7050407
15.
Solís-Pérez
,
J.
,
Gómez-Aguilar
,
J.
,
Torres
,
L.
,
Escobar-Jiménez
,
R.
, and
Reyes-Reyes
,
J.
,
2019
, “
Fitting of Experimental Data Using a Fractional Kalman-Like Observer
,”
ISA Trans.
,
88
, pp.
153
169
.10.1016/j.isatra.2018.11.036
16.
Koh
,
B. S.
, and
Junkins
,
J. L.
,
2012
, “
Kalman Filter for Linear Fractional Order Systems
,”
J. Guid., Control, Dyn.
,
35
(
6
), pp.
1816
1827
.10.2514/1.56170
17.
Caponetto
,
R.
,
Machado
,
J. T.
,
Murgano
,
E.
, and
Xibilia
,
M. G.
,
2019
, “
Model Order Reduction: A Comparison Between Integer and Non-Integer Order Systems Approaches
,”
Entropy
,
21
(
9
), p.
876
.10.3390/e21090876
18.
Bagley
,
R. L.
, and
Torvik
,
P.
,
1983
, “
A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,”
J. Rheol.
,
27
(
3
), pp.
201
210
.10.1122/1.549724
19.
Freed
,
A. D.
, and
Diethelm
,
K.
,
2006
, “
Fractional Calculus in Biomechanics: A 3d Viscoelastic Model Using Regularized Fractional Derivative Kernels With Application to the Human Calcaneal Fat Pad
,”
Biomech. Model. Mechanobiol.
,
5
(
4
), pp.
203
215
.10.1007/s10237-005-0011-0
20.
Silva
,
M. F.
,
Machado
,
J. T.
, and
Lopes
,
A.
,
2004
, “
Fractional Order Control of a Hexapod Robot
,”
Nonlinear Dyn.
,
38
(
1–4
), pp.
417
433
.10.1007/s11071-004-3770-8
21.
Danca
,
M.-F.
,
2021
, “
Hopfield Neuronal Network of Fractional Order: A Note on Its Numerical Integration
,”
Chaos, Solitons Fractals
,
151
, p.
111219
.10.1016/j.chaos.2021.111219
22.
Jesus
,
I. S.
, and
Machado
,
J. T.
,
2008
, “
Fractional Control of Heat Diffusion Systems
,”
Nonlinear Dyn.
,
54
(
3
), pp.
263
282
.10.1007/s11071-007-9322-2
23.
Sierociuk
,
D.
,
Dzieliński
,
A.
,
Sarwas
,
G.
,
Petras
,
I.
,
Podlubny
,
I.
, and
Skovranek
,
T.
,
2013
, “
Modelling Heat Transfer in Heterogeneous Media Using Fractional Calculus
,”
Philos. Trans. R. Soc., A
,
371
(
1990
), p.
20120146
.10.1098/rsta.2012.0146
24.
Failla
,
G.
, and
Zingales
,
M.
,
2020
, “
Advanced Materials Modelling Via Fractional Calculus: Challenges and Perspectives
,”
Philos. Trans. R. Soc., A
,
378
(
2172
), p.
20200050
.10.1098/rsta.2020.0050
25.
Ionescu
,
C. M.
,
Birs
,
I. R.
,
Copot
,
D.
,
Muresan
,
C. I.
, and
Caponetto
,
R.
,
2020
, “
Mathematical Modelling With Experimental Validation of Viscoelastic Properties in Non-Newtonian Fluids
,”
Philos. Trans. R. Soc., A
,
378
(
2172
), p.
20190284
.10.1098/rsta.2019.0284
26.
Xu
,
B.
,
Chen
,
D.
,
Zhang
,
H.
, and
Wang
,
F.
,
2015
, “
Modeling and Stability Analysis of a Fractional-Order Francis Hydro-Turbine Governing System
,”
Chaos, Solitons Fractals
,
75
, pp.
50
61
.10.1016/j.chaos.2015.01.025
27.
Baleanu
,
D.
,
2008
, “
Fractional Constrained Systems and Caputo Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(
2
), p.
021102
.10.1115/1.2833586
28.
Magin
,
R. L.
,
2010
, “
Fractional Calculus Models of Complex Dynamics in Biological Tissues
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1586
1593
.10.1016/j.camwa.2009.08.039
29.
Patnaik
,
S.
, and
Semperlotti
,
F.
,
2020
, “
Modeling Contacts and Hysteretic Behavior in Discrete Systems Via Variable-Order Fractional Operators
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
9
), p.
091008
.10.1115/1.4046831
30.
Rossikhin
,
Y. A.
, and
Shitikova
,
M. V.
,
2010
, “
Application of Fractional Calculus for Dynamic Problems of Solid Mechanics: Novel Trends and Recent Results
,”
ASME Appl. Mech. Rev.
,
63
(
1
), p.
010801
.10.1115/1.4000563
31.
Bueno-Orovio
,
A.
,
Kay
,
D.
,
Grau
,
V.
,
Rodriguez
,
B.
, and
Burrage
,
K.
,
2014
, “
Fractional Diffusion Models of Cardiac Electrical Propagation: Role of Structural Heterogeneity in Dispersion of Repolarization
,”
J. R. Soc. Interface
,
11
(
97
), p.
20140352
.10.1098/rsif.2014.0352
32.
Machado
,
J. A. T.
,
Baleanu
,
D.
,
Chen
,
W.
, and
Sabatier
,
J.
,
2014
, “
New Trends in Fractional Dynamics
,”
J. Vib. Control
,
20
(
7
), p.
963
.
33.
Suzuki
,
J. L.
,
Kharazmi
,
E.
,
Varghaei
,
P.
,
Naghibolhosseini
,
M.
, and
Zayernouri
,
M.
,
2021
, “
Anomalous Nonlinear Dynamics Behavior of Fractional Viscoelastic Beams
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
11
), p.
111005
.10.1115/1.4052286
34.
Dubey
,
S.
,
Dubey
,
V. P.
,
Singh
,
J.
,
Alshehri
,
A. M.
, and
Kumar
,
D.
,
2022
, “
Computational Study of a Local Fractional Tricomi Equation Occurring in Fractal Transonic Flow
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
8
), p.
081006
.10.1115/1.4054482
35.
Beghin
,
L.
, and
Caputo
,
M.
,
2023
, “
Stochastic Applications of Caputo-Type Convolution Operators With Nonsingular Kernels
,”
Stochastic Anal. Appl.
,
41
(
2
), pp.
377
393
.10.1080/07362994.2021.2021091
36.
Kartal
,
S.
,
2023
, “
Caputo and Conformable Fractional Order Guava Model for Biological Pest Control: Discretization, Stability and Bifurcation
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
12
), p.
121002
.10.1115/1.4063555
37.
Atan
,
O.
,
Chen
,
D.
, and
Türk
,
M.
,
2016
, “
Fractional Order PID and Application of Its Circuit Model
,”
J. Chin. Inst. Eng.
,
39
(
6
), pp.
695
703
.10.1080/02533839.2016.1187080
38.
Mainardi
,
F.
,
1997
, “
Fractional Calculus
,”
Fractals and Fractional Calculus in Continuum Mechanics
,
Springer
,
Vienna, Austria
, pp.
291
348
.
39.
Diethelm
,
K.
,
2010
,
The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type (Lecture Notes in Mathematics)
,
Springer
,
Berlin, Germany
.
40.
Torvik
,
P. J.
, and
Bagley
,
R. L.
,
1984
, “
On the Appearance of the Fractional Derivative in the Behavior of Real Materials
,”
ASME J. Appl. Mech.
,
51
(
2
), pp.
294
298
.10.1115/1.3167615
41.
Krishnasamy
,
V. S.
, and
Razzaghi
,
M.
,
2016
, “
The Numerical Solution of the Bagley-Torvik Equation With Fractional Taylor Method
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051010
.10.1115/1.4032390
42.
Edwards
,
J. T.
,
Ford
,
N. J.
, and
Simpson
,
A. C.
,
2002
, “
The Numerical Solution of Linear Multi-Term Fractional Differential Equations: Systems of Equations
,”
J. Comput. Appl. Math.
,
148
(
2
), pp.
401
418
.10.1016/S0377-0427(02)00558-7
43.
Daftardar-Gejji
,
V.
, and
Jafari
,
H.
,
2005
, “
Adomian Decomposition: A Tool for Solving a System of Fractional Differential Equations
,”
J. Math. Anal. Appl.
,
301
(
2
), pp.
508
518
.10.1016/j.jmaa.2004.07.039
44.
Popović
,
J. K.
,
Atanacković
,
M. T.
,
Pilipović
,
A. S.
,
Rapaić
,
M. R.
,
Pilipović
,
S.
, and
Atanacković
,
T. M.
,
2010
, “
A New Approach to the Compartmental Analysis in Pharmacokinetics: Fractional Time Evolution of Diclofenac
,”
J. Pharmacokinet. Pharmacodyn.
,
37
(
2
), pp.
119
134
.10.1007/s10928-009-9147-3
45.
Samko
,
S.
,
Kilbas
,
A.
, and
Marichev
,
O.
,
1993
,
Fractional Integrals and Derivatives
,
Gordon and Breach
,
Yverdon, Switzerland
.
46.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
, Vol.
204
,
Elsevier
,
Amsterdam, The Netherlands
.
47.
Sahu
,
A.
,
2018
, “
Solution Methods and Kalman Filtering for Systems With Memory
,” B.Tech thesis,
Department of Mechanical Engineering, Indian Institute of Technology, Ropar
,
Rupnagar, Punjab
.
48.
Coddington
,
E. A.
, and
Levinson
,
N.
,
1955
,
Theory of Ordinary Differential Equations
,
Tata McGraw-Hill Education
,
New York
.
49.
Garrappa
,
R.
,
2018
, “
Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial
,”
Mathematics
,
6
(
2
), p.
16
.10.3390/math6020016
50.
Diethelm
,
K.
,
Garrappa
,
R.
, and
Stynes
,
M.
,
2020
, “
Good (And Not So Good) Practices in Computational Methods for Fractional Calculus
,”
Mathematics
,
8
(
3
), p.
324
.10.3390/math8030324
51.
Abundo
,
M.
,
Ascione
,
G.
,
Carfora
,
M.
, and
Pirozzi
,
E.
,
2020
, “
A Fractional PDE for First Passage Time of Time-Changed Brownian Motion and Its Numerical Solution
,”
Appl. Numer. Math.
,
155
, pp.
103
118
.10.1016/j.apnum.2019.07.020
52.
Sowa
,
M.
,
Kawala-Janik
,
A.
, and
Bauer
,
W.
,
2018
, “
Fractional Differential Equation Solvers in Octave/Matlab
,”
Proceedings of the 2018 23rd International Conference on Methods and Models in Automation and Robotics
(
MMAR
),
Miedzyzdroje, Poland
, Aug. 27–30, pp.
628
633
.10.1109/MMAR.2018.8485964
53.
Gorenflo
,
R.
, and
Mainardi
,
F.
,
1997
,
Fractional Calculus: Integral and Differential Equations of Fractional Order
,
Springer
,
Vienna, Austria
.
You do not currently have access to this content.