Abstract

This paper describes the derivation of an explicit and general dynamics model for nonredundant parallel manipulators according to a novel formalism and Jacobian/Hessian matrices of the constraint equations. This dynamic model is based solely on tensor theory and can be used for both inverse and direct dynamics. In the present model, all dynamic effects are directly derived from the system's structural parameters and generalized variables, without any intermediate complex computations such as velocity and acceleration-based energy, differentiation, or acceleration calculations, and without the need for symbolic expressions; consequently, they can be computed completely online. Next, an example of parallel manipulator is used in this study to verify the proposed general formulation in terms of simplicity, correctness, and efficiency. The model is more efficient in providing explicit equations of motion and can even compete with implicit formulations for a specific manipulator structure. In addition, it can be further optimized to perform real-time control. Finally, to address uncertainties in the system, robust model-based control is implemented based on the proposed model. Hence, this paper provides a theoretical basis for control strategies and structural parameter optimization.

References

1.
Xu
,
P.
,
Cheung
,
C. F.
,
Li
,
B.
,
Wang
,
C.
, and
Zhao
,
C.
,
2021
, “
Design, Dynamic Analysis, and Experimental Evaluation of a Hybrid Parallel–Serial Polishing Machine With Decoupled Motions
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061008
.10.1115/1.4050829
2.
Tsai
,
M.
,
Shiau
,
T. N.
,
Tsai
,
Y.
, and
Chang
,
T. H.
,
2003
, “
Direct Kinematic Analysis of a 3-PRS Parallel Mechanism
,”
Mech. Mach. Theory
,
38
(
1
), pp.
71
83
.10.1016/S0094-114X(02)00069-1
3.
Xin
,
G.
,
Deng
,
H.
, and
Zhong
,
G.
,
2016
, “
Closed-Form Dynamics of a 3-DOF Spatial Parallel Manipulator by Combining the Lagrangian Formulation With the Virtual Work Principle
,”
Nonlinear Dyn
,.
86
(
2
), pp.
1329
1347
.10.1007/s11071-016-2967-y
4.
Ding
,
W.
,
Deng
,
H.
,
Li
,
Q.
, and
Xia
,
Y.
,
2014
, “
Control-Orientated Dynamic Modeling of Forging Manipulators With Multi-Closed Kinematic Chains
,”
Rob. Comput. Integrated Manuf.
,
30
(
5
), pp.
421
431
.10.1016/j.rcim.2014.01.003
5.
Abdellatif
,
H.
, and
Heimann
,
B.
,
2009
, “
Computational Efficient Inverse Dynamics of 6-DOF Fully Parallel Manipulators by Using the Lagrangian Formalism
,”
Mech. Mach. Theory
,
44
(
1
), pp.
192
207
.10.1016/j.mechmachtheory.2008.02.003
6.
Bi
,
Z. M.
, and
Kang
,
B.
,
2014
, “
An Inverse Dynamic Model of Overconstrained Parallel Kinematic Machine Based on Newton–Euler Formulation
,”
ASME J. Dyn. Syst. Meas. Control
,
136
(
4
), p.
041001
.10.1115/1.4026533
7.
Guo
,
F.
,
Cheng
,
G.
, and
Pang
,
Y.
,
2022
, “
Pang: Explicit Dynamic Modeling With Joint Friction and Coupling Analysis of a 5-DOF Hybrid Polishing Robot
,”
Mech. Mach. Theory
,
167
, p.
104509
.10.1016/j.mechmachtheory.2021.104509
8.
Mirtaheri
,
S. M.
, and
Zohoor
,
H.
,
2021
, “
Quasi-velocities Definition in Lagrangian Multibody Dynamics
,”
Proc. Inst. Mech. Eng., C J. Mech. Eng. Sci
,.
235
(
20
), pp. 4679--4691.10.1177/0954406221995852
9.
Chen
,
C. T.
,
2003
, “
A Lagrangian Formulation in Terms of Quasi Coordinates for the Inverse Dynamics of the General 6-6 Stewart Platform Manipulator
,”
JSME Int. J.
,
46
(
3
), pp.
1084
1090
.10.1299/jsmec.46.1084
10.
Muralidharan
,
V.
,
Mamidi
,
T. K.
,
Guptasarma
,
S.
,
Nag
,
A.
, and
Bandyopadhyay
,
S.
,
2018
, “
A Comparative Study of the Configuration-Space and Actuator-Space Formulations of the Lagrangian Dynamics of Parallel Manipulators and the Effects of Kinematic Singularities on These
,”
Mechanism Mach. Theory
,
130
, pp.
403
434
.10.1016/j.mechmachtheory.2018.07.009
11.
Enferadi
,
J.
, and
Jafari
,
K.
,
2020
, “
A Kane's Based Algorithm for Closed-Form Dynamic Analysis of a New Design of a 3RSS-S Spherical Parallel Manipulator
,”
Multibody Syst Dyn
,
49
(
4
), pp.
377
394
.10.1007/s11044-020-09736-y
12.
Asadi
,
F.
, and
Sadati
,
S. H.
,
2018
, “
Full Dynamic Modeling of the General Stewart Platform Manipulator Via Kane's Method
,”
Iran. J. Sci. Technol. Trans. Mech. Eng
,.
42
(
2
), pp.
161
168
.10.1007/s40997-017-0091-3
13.
Enferadi
,
J.
, and
Akbarzadeh
,
A.
,
2010
, “
Inverse Dynamics Analysis of a General Spherical Star-Triangle Parallel Manipulator Using the Principle of Virtual Work
,”
Nonlinear Dyn
,.
61
(
3
), pp.
419
434
.10.1007/s11071-010-9659-9
14.
Abedloo
,
E.
,
Molaei
,
A.
, and
Taghirad
,
H. D.
,
2014
, “
Closed-Form Dynamic Formulation of Spherical Parallel Manipulators by Gibbs–Appell Method
,”
Second RSI/ISM International Conference on Robotics and Mechatronics
(
ICRoM
), Tehran, Iran, Oct. 15--17, pp.
576
581
.10.1109/ICRoM.2014.6990964
15.
Mirtaheri
,
S. M.
, and
Zohoor
,
H.
,
2021
, “
Efficient Formulation of the Gibbs-Appell Equations for Constrained Multibody Systems
,”
Multibody Syst. Dyn.
,
53
(
3
), pp.
303
325
.10.1007/s11044-021-09798-6
16.
Yang
,
X.
,
Zhang
,
X.
,
Chen
,
Z.
,
Xu
,
S.
, and
Liu
,
P. X.
,
2019
, “
Udwadia-Kalaba Approach for Three Link Manipulator Dynamics With Motion Constraints
,”
IEEE Access
,
7
, pp.
49240
49250
.10.1109/ACCESS.2019.2909934
17.
Zhao
,
X.
,
Chen
,
Y.
,
Zhao
,
H.
, and
Dong
,
F.
,
2018
, “
Udwadia–Kalaba Equation for Constrained Mechanical Systems: Formulation and Applications
,”
Chin. J. Mech. Eng.
,
31
(
1
), pp. 1–14.10.1186/s10033-018-0310-x
18.
Khalil
,
W.
, and
Ibrahim
,
O.
,
2007
, “
General Solution for the Dynamic Modeling of Parallel Robots
,”
J. Intell. Robot. Syst.
,
49
(
1
), pp.
19
37
.10.1007/s10846-007-9137-x
19.
Abeywardena
,
S.
, and
Chen
,
C.
,
2017
, “
Inverse Dynamic Modeling of a Three-Legged Six-Degree-of-Freedom Parallel Mechanism
,”
Multibody Syst. Dyn
,.
41
(
1
), pp.
1
24
.10.1007/s11044-016-9506-y
20.
Akbarzadeh
,
A.
,
Enferadi
,
J.
, and
Sharifnia
,
M.
,
2013
, “
Dynamics Analysis of a 3-RRP Spherical Parallel Manipulator Using the Natural Orthogonal Complement
,”
Multibody Syst. Dyn
,.
29
(
4
), pp.
361
380
.10.1007/s11044-012-9321-z
21.
Eskandary
,
P. K.
, and
Angeles
,
J.
,
2018
, “
The Dynamics of a Parallel Schönflies-Motion Generator
,”
Mech. Mach. Theory
,
119
, pp.
119
129
.10.1016/j.mechmachtheory.2017.09.006
22.
Sun
,
T.
, and
Yang
,
S.
,
2019
, “
An Approach to Formulate the Hessian Matrix for Dynamic Control of Parallel Robots
,”
IEEE-ASME Trans Mechatron.
,
24
(
1
), pp.
271
281
.10.1109/TMECH.2019.2891297
23.
Zhu
,
S. J.
,
Huang
,
Z.
, and
Ding
,
H. F.
,
2007
, “
Forward/Reverse Velocity and Acceleration Analysis for a Class of Lower-Mobility Parallel Mechanisms
,”
ASME J. Mech. Des.
,
129
(
4
), pp.
390
396
.10.1115/1.2429698
24.
Lu
,
Y.
, and
Ye
,
N.
,
2018
, “
New Kinematics Hessian Matrices of Manipulators Based on Skew-Symmetric Matrices Theory
,”
Appl. Math. Model
,
63
, pp.
55
67
.10.1016/j.apm.2018.06.033
25.
Bertrand
,
S.
, and
Bruneau
,
O.
,
2013
, “
A Clear Description of System Dynamics Through the Physical Parameters and Generalized Coordinates
,”
Multibody Syst Dyn
,
29
(
2
), pp.
213
233
.10.1007/s11044-012-9330-y
26.
Baji
,
O. E.
,
Amrani
,
N. B.
, and
Sarsri
,
D.
,
2022
, “
Online Trajectory Tracking Control Based on the Explicit Form of the Equations of Motion for Serial Manipulator Using the New Formulation
,”
J. Rob.
,
2022
, p.
8715161
.10.1155/2022/8715161
27.
Li
,
M.
,
Huang
,
T.
,
Mei
,
J.
,
Zhao
,
X.
,
Chetwynd
,
D. G.
, and
Jack Hu
,
S.
,
2005
, “
Dynamic Formulation and Performance Comparison of the 3-DOF Modules of Two Reconfigurable PKM—the Tricept and the Trivariant
,”
ASME J. Mech. Des.
,
127
(
6
), pp.
1129
1136
.10.1115/1.1992511
You do not currently have access to this content.