Graphical Abstract Figure

Model Order Reduction of Viscoelastic Flexible Multibody System based on Complex Modal Synthesis Method

Graphical Abstract Figure

Model Order Reduction of Viscoelastic Flexible Multibody System based on Complex Modal Synthesis Method

Close modal

Abstract

The viscoelastic dynamic model of flexible multibody coupled with large rotation and deformation can be described by the absolute nodal coordinate formulation (ANCF). However, with the increase of degrees-of-freedom, the computational cost of viscoelastic multibody systems will be very high. In addition, for nonproportionally viscoelastic flexible multibody systems, the orthogonality and superposition of complex modes only exist in the state space. In this investigation, a systematical procedure of model reduction method for viscoelastic flexible multibody systems described by ANCF is proposed based on the complex modal synthesis method. First, the whole motion process of the system is divided into a series of quasi-static equilibrium configurations. Then the dynamic equation is locally linearized based on the Taylor expansion to obtain the constant tangent stiffness matrix and damping matrix. The initial modes and modal coordinates need to be updated for each subinterval. A modal selection criterion based on the energy judgment is proposed to ensure the energy conservation and accuracy by the minimum number of truncations. Finally, three numerical examples are carried out as verification. Simulation results indicate that the method proposed procedure reduces the system scale and improves the computational efficiency under the premise of ensuring the simulation accuracy.

References

1.
Shi
,
H.
,
Wang
,
J.
,
Wu
,
P.
,
Song
,
C.
, and
Teng
,
W.
,
2018
, “
Field Measurements of the Evolution of Wheel Wear and Vehicle Dynamics for High-Speed Trains
,”
Veh. Syst. Dyn.
,
56
(
8
), pp.
1187
1206
.10.1080/00423114.2017.1406963
2.
Shi
,
H.
,
Zeng
,
J.
, and
Guo
,
J.
,
2024
, “
Disturbance Observer-Based Sliding Mode Control of Active Vertical Suspension for High-Speed Rail Vehicles
,”
Veh. Syst. Dyn.
, 62, pp.
1
24
.10.1080/00423114.2024.2305296
3.
He
,
H.
,
Zhou
,
N.
,
Liu
,
W.
, and
Yuan
,
W.
,
2015
, “
Analysis of Vibration Suppression Characteristics of Plank Structure Layered by Visco-Elastic Damping Materials
,”
Comput. Simul.
,
32
, pp.
203
207
(in Chinese).https://link.oversea.cnki.net/doi/10.3969/j.issn.1006-9348.2015.07.045
4.
de Lima
,
A. M. G.
,
Lambert
,
S.
,
Rade
,
D. A.
,
Pagnacco
,
E.
, and
Khalij
,
L.
,
2014
, “
Fatigue Reliability Analysis of Viscoelastic Structures Subjected to Random Loads
,”
Mech. Syst. Signal Process.
,
43
(
1–2
), pp.
305
318
.10.1016/j.ymssp.2013.10.004
5.
Shabana
,
A. A.
,
1997
, “
Flexible Multibody Dynamics Review of Past and Recent Development
,”
Multibody Syst. Dyn.
,
1
, pp.
189
222
.10.1023/A:1009773505418
6.
Yu
,
X.
,
Zwölfer
,
A.
, and
Mikkola
,
A.
,
2023
, “
An Efficient, Floating-Frame-of-Reference-Based Recursive Formulation to Model Planar Flexible Multibody Applications
,”
J. Sound Vib.
,
547
, p.
117542
.10.1016/j.jsv.2022.117542
7.
Dibold
,
M.
,
Gerstmayr
,
J.
, and
Irschik
,
H.
,
2009
, “
A Detailed Comparison of the Absolute Nodal Coordinate and the Floating Frame of Reference Formulation in Deformable Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
, p.
021006
.10.1115/1.3079825
8.
Rong
,
B.
,
Rui
,
X.
,
Tao
,
L.
, and
Wang
,
G.
,
2019
, “
Theoretical Modeling and Numerical Solution Methods for Flexible Multibody System Dynamics
,”
Nonlinear Dyn.
,
98
(
2
), pp.
1519
1553
.10.1007/s11071-019-05191-3
9.
Otsuka
,
K.
,
Makihara
,
K.
, and
Sugiyama
,
H.
,
2022
, “
Recent Advances in the Absolute Nodal Coordinate Formulation: Literature Review From 2012 to 2020
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
8
), p.
080803
.10.1115/1.4054113
10.
Otsuka
,
K.
, and
Makihara
,
K.
,
2016
, “
Aeroelastic Deployable Wing Simulation Considering Rotation Hinge Joint Based on Flexible Multibody Dynamics
,”
J. Sound Vib.
,
369
, pp.
147
167
.10.1016/j.jsv.2016.01.026
11.
Otsuka
,
K.
,
Wang
,
Y.
, and
Makihara
,
K.
,
2019
, “
Versatile Absolute Nodal Coordinate Formulation Model for Dynamic Folding Wing Deployment and Flutter Analyses
,”
ASME J. Vib. Acoust.
,
141
(
1
), p.
011014
.10.1115/1.4041022
12.
Ghorbani
,
H.
,
Alipour
,
K.
,
Tarvirdizadeh
,
B.
, and
Hadi
,
A.
,
2019
, “
Comparison of Various Input Shaping Methods in Rest-to-Rest Motion of the End-Effecter of a Rigid-Flexible Robotic System With Large Deformations Capability
,”
Mech. Syst. Signal Process.
,
118
, pp.
584
602
.10.1016/j.ymssp.2018.09.003
13.
Ghorbani
,
H.
,
Tarvirdizadeh
,
B.
,
Alipour
,
K.
, and
Hadi
,
A.
,
2019
, “
Near-Time-Optimal Motion Control for Flexible-Link Systems Using Absolute Nodal Coordinates Formulation
,”
Mech. Mach. Theory
,
140
, pp.
686
710
.10.1016/j.mechmachtheory.2019.06.032
14.
Heidari
,
H. R.
,
Korayem
,
M. H.
, and
Haghpanahi
,
M.
,
2015
, “
Maximum Allowable Load of Very Flexible Manipulators by Using Absolute Nodal Coordinate
,”
Aerosp. Sci. Technol.
,
45
, pp.
67
77
.10.1016/j.ast.2015.04.018
15.
Li
,
K.
,
Tian
,
Q.
,
Shi
,
J.
, and
Liu
,
D.
,
2019
, “
Assembly Dynamics of a Large Space Modular Satellite Antenna
,”
Mech. Mach. Theory
,
142
, p.
103601
.10.1016/j.mechmachtheory.2019.103601
16.
Yang
,
Y.
,
Rong
,
J.
,
Li
,
J.
, and
Tang
,
L.
,
2015
, “
Research on Flexible Joint Stiffness Test and Trajectory Planning of Space Manipulator
,”
Adv. Mech. Eng.
,
5
, p.
280453
.10.1155/2013/280453
17.
Pacheco-Ramos
,
G.
,
Garcia-Vallejo
,
D.
, and
Vazquez
,
R.
,
2023
, “
Formulation of a High-Fidelity Multibody Dynamical Model for an Electric Solar Wind Sail
,”
Int. J. Mech. Sci.
,
256
, p.
108466
.10.1016/j.ijmecsci.2023.108466
18.
Li
,
P.
,
Liu
,
C.
,
Tian
,
Q.
,
Hu
,
H.
, and
Song
,
Y.
,
2016
, “
Dynamics of a Deployable Mesh Reflector of Satellite Antenna: Form-Finding and Modal Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041017
.10.1115/1.4033440
19.
Sivo
,
S.
,
Stio
,
A.
,
Mocera
,
F.
, and
Somà
,
A.
,
2019
, “
A Study of a Rover Wheel for Martian Explorations, Based on a Flexible Multibody Approach
,”
Proc. Inst. Mech. Eng., Part K
,
234
(
2
), pp.
306
321
.10.1177/1464419319893489
20.
Wang
,
T.
,
Tinsley
,
B.
,
Patel
,
M. D.
, and
Shabana
,
A. A.
,
2018
, “
Nonlinear Dynamic Analysis of Parabolic Leaf Springs Using ANCF Geometry and Data Acquisition
,”
Nonlinear Dyn.
,
93
(
4
), pp.
2487
2515
.10.1007/s11071-018-4338-3
21.
Lee
,
J.-H.
, and
Park
,
T.-W.
,
2012
, “
Development of a Three-Dimensional Catenary Model Using Cable Elements Based on Absolute Nodal Coordinate Formulation
,”
J. Mech. Sci. Technol.
,
26
(
12
), pp.
3933
3941
.10.1007/s12206-012-0892-7
22.
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2016
, “
Physics-Based Flexible Tire Model Integrated With LuGre Tire Friction for Transient Braking and Cornering Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031017
.10.1115/1.4032855
23.
Daocharoenporn
,
S.
,
Mongkolwongrojn
,
M.
,
Kulkarni
,
S.
, and
Shabana
,
A. A.
,
2019
, “
Prediction of the Pantograph/Catenary Wear Using Nonlinear Multibody System Dynamic Algorithms
,”
ASME J. Tribol.
,
141
(
5
), p.
051603
.10.1115/1.4042658
24.
Kulkarni
,
S.
,
Pappalardo
,
C. M.
, and
Shabana
,
A. A.
,
2017
, “
Pantograph/Catenary Contact Formulations
,”
ASME J. Vib. Acoust.
,
139
(
1
), p.
011010
.10.1115/1.4035132
25.
Qu
,
Y.
,
Wang
,
P.
,
Fu
,
S.
, and
Zhao
,
M.
,
2023
, “
Vortex-Induced Vibrations of a Top Tensioned Riser Subjected to Flows With Spanwise Varying Directions
,”
Int. J. Mech. Sci.
,
242
, p.
107954
.10.1016/j.ijmecsci.2022.107954
26.
Yuan
,
J.-R.
, and
Ding
,
H.
,
2022
, “
Dynamic Model of Curved Pipe Conveying Fluid Based on the Absolute Nodal Coordinate Formulation
,”
Int. J. Mech. Sci.
,
232
, p.
107625
.10.1016/j.ijmecsci.2022.107625
27.
Lee
,
J. W.
,
Kim
,
H. W.
,
Ku
,
H. C.
, and
Yoo
,
W. S.
,
2009
, “
Comparison of External Damping Models in a Large Deformation Problem
,”
J. Sound Vib.
,
325
(
4–5
), pp.
722
741
.10.1016/j.jsv.2009.04.018
28.
Garcíd;a-Vallejo
,
D.
,
Valverde
,
J.
, and
Domínguez
,
J.
,
2005
, “
An Internal Damping Model for the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
42
(
4
), pp.
347
369
.10.1007/s11071-005-6445-1
29.
Yu
,
H.
,
Zhao
,
C.
, and
Zheng
,
H.
,
2018
, “
A Higher-Order Variable Cross-Section Viscoelastic Beam Element Via ANCF for Kinematic and Dynamic Analyses of Two-Link Flexible Manipulators
,”
Int. J. Appl. Mech.
,
9
(
8
), p.
1750116
.10.1142/s1758825117501162
30.
Htun
,
T. Z.
,
Suzuki
,
H.
, and
García-Vallejo
,
D.
,
2020
, “
Dynamic Modeling of a Radially Multilayered Tether Cable for a Remotely-Operated Underwater Vehicle (ROV) Based on the Absolute Nodal Coordinate Formulation (ANCF)
,”
Mech. Mach. Theory
,
153
, p.
103961
.10.1016/j.mechmachtheory.2020.103961
31.
Ma
,
C.
,
Wang
,
R.
,
Wei
,
C.
, and
Zhao
,
Y.
,
2016
, “
A New Absolute Nodal Coordinate Formulation of Solid Element With Continuity Condition and Viscosity Model
,”
Int. J. Simul. Syst. Sci. Technol.
, 17(21), pp. 10.1–10.6.10.5013/IJSSST.a.17.21.10
32.
Grossi
,
E.
, and
Shabana
,
A. A.
,
2019
, “
Analysis of High-Frequency ANCF Modes: Navier–Stokes Physical Damping and Implicit Numerical Integration
,”
Acta Mech.
,
230
(
7
), pp.
2581
2605
.10.1007/s00707-019-02409-8
33.
Obrezkov
,
L.
,
Eliasson
,
P.
,
Harish
,
A. B.
, and
Matikainen
,
M. K.
,
2021
, “
Usability of Finite Elements Based on the Absolute Nodal Coordinate Formulation for Deformation Analysis of the Achilles Tendon
,”
Int. J. Non-Linear Mech.
,
129
, p.
103662
.10.1016/j.ijnonlinmec.2020.103662
34.
Zhang
,
Y.
,
Tian
,
Q.
,
Chen
,
L.
, and
Yang
,
J.
,
2009
, “
Simulation of a Viscoelastic Flexible Multibody System Using Absolute Nodal Coordinate and Fractional Derivative Methods
,”
Multibody Syst. Dyn.
,
21
(
3
), pp.
281
303
.10.1007/s11044-008-9139-x
35.
Gu
,
Y.
,
Yu
,
Z.
,
Lan
,
P.
, and
Lu
,
N.
,
2023
, “
Fractional Derivative Viscosity of ANCF Cable Element
,”
Actuators
,
12
(
2
), p.
64
.10.3390/act12020064
36.
Shen
,
Z.
,
Liu
,
C.
, and
Li
,
H.
,
2020
, “
Viscoelastic Analysis of Bistable Composite Shells Via Absolute Nodal Coordinate Formulation
,”
Compos. Struct.
,
248
, p.
112537
.10.1016/j.compstruct.2020.112537
37.
Masoudi
,
R.
,
Uchida
,
T.
, and
McPhee
,
J.
,
2015
, “
Reduction of Multibody Dynamic Models in Automotive Systems Using the Proper Orthogonal Decomposition
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
3
), p.
031007
.10.1115/1.4029390
38.
Hess
,
M. W.
,
Quaini
,
A.
, and
Rozza
,
G.
,
2023
, “
A Data-Driven Surrogate Modeling Approach for Time-Dependent Incompressible Navier-Stokes Equations With Dynamic Mode Decomposition and Manifold Interpolation
,”
Adv. Comput. Math.
,
49
(
2
), p.
22
.10.1007/s10444-023-10016-4
39.
Lu
,
H.
, and
Tartakovsky
,
D. M.
,
2023
, “
DRIPS: A Framework for Dimension Reduction and Interpolation in Parameter Space
,”
J. Comput. Phys.
,
493
, p.
112455
.10.1016/j.jcp.2023.112455
40.
Kim
,
E.
,
Kim
,
H.
, and
Cho
,
M.
,
2017
, “
Model Order Reduction of Multibody System Dynamics Based on Stiffness Evaluation in the Absolute Nodal Coordinate Formulation
,”
Nonlinear Dyn.
,
87
(
3
), pp.
1901
1915
.10.1007/s11071-016-3161-y
41.
Kim
,
E.
, and
Cho
,
M.
,
2018
, “
Design of a Planar Multibody Dynamic System With ANCF Beam Elements Based on an Element-Wise Stiffness Evaluation Procedure
,”
Struct. Multidiscip. Optim.
,
58
(
3
), pp.
1095
1107
.10.1007/s00158-018-1954-y
42.
Luo
,
K.
,
Hu
,
H.
,
Liu
,
C.
, and
Tian
,
Q.
,
2017
, “
Model Order Reduction for Dynamic Simulation of a Flexible Multibody System Via Absolute Nodal Coordinate Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
324
, pp.
573
594
.10.1016/j.cma.2017.06.029
43.
Hou
,
Y.
,
Liu
,
C.
, and
Hu
,
H.
,
2020
, “
Component-Level Proper Orthogonal Decomposition for Flexible Multibody Systems
,”
Comput. Methods Appl. Mech. Eng.
,
361
, p.
112690
.10.1016/j.cma.2019.112690
44.
Holzwarth
,
P.
, and
Eberhard
,
P.
,
2015
, “
Interface Reduction for CMS Methods and Alternative Model Order Reduction
,”
IFAC-PapersOnLine
,
48
(
1
), pp.
254
259
.10.1016/j.ifacol.2015.05.005
45.
Ziegler
,
P.
,
Humer
,
A.
,
Pechstein
,
A.
, and
Gerstmayr
,
J.
,
2016
, “
Generalized Component Mode Synthesis for the Spatial Motion of Flexible Bodies With Large Rotations About One Axis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041018
.10.1115/1.4032160
46.
Zwölfer
,
A.
, and
Gerstmayr
,
J.
,
2023
, “
Absolute Coordinate Formulation and Generalized Component Mode Synthesis With Rigid Body Coordinates
,”
Multibody Syst. Dyn.
,
57
(
3–4
), pp.
327
342
.10.1007/s11044-023-09878-9
47.
Kobayashi
,
N.
,
Wago
,
T.
, and
Sugawara
,
Y.
,
2011
, “
Reduction of System Matrices of Planar Beam in ANCF by Component Mode Synthesis Method
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
265
281
.10.1007/s11044-011-9259-6
48.
Sun
,
D.
,
Chen
,
G.
, and
Sun
,
R.
,
2014
, “
Model Reduction of a Multibody System Including a Very Flexible Beam Element
,”
J. Mech. Sci. Technol.
,
28
(
8
), pp.
2963
2969
.10.1007/s12206-014-0703-4
49.
Tian
,
Q.
,
Lan
,
P.
, and
Yu
,
Z.
,
2020
, “
Model-Order Reduction of Flexible Multibody Dynamics Via Free-Interface Component Mode Synthesis Method
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(10), p.
101008
.
50.
Tao
,
T.
,
Han
,
W.
, and
Zhao
,
G.
,
2024
, “
Efficient Strategy for Topology Optimization of Stochastic Viscoelastic Damping Structures
,”
Int. J. Mech. Sci.
,
278
, p. 109431.10.1016/j.ijmecsci.2024.109431
51.
Cunha-Filho
,
A. G.
,
Briend
,
Y. P. J.
,
de Lima
,
A. M. G.
, and
Donadon
,
M. V.
,
2018
, “
An Efficient Iterative Model Reduction Method for Aeroviscoelastic Panel Flutter Analysis in the Supersonic Regime
,”
Mech. Syst. Signal Process.
,
104
, pp.
575
588
.10.1016/j.ymssp.2017.11.018
52.
Xie
,
X.
,
Zheng
,
H.
,
Jonckheere
,
S.
,
van de Walle
,
A.
,
Pluymers
,
B.
, and
Desmet
,
W.
,
2018
, “
Adaptive Model Reduction Technique for Large-Scale Dynamical Systems With Frequency-Dependent Damping
,”
Comput. Methods Appl. Mech. Eng.
,
332
, pp.
363
381
.10.1016/j.cma.2017.12.023
53.
Naets
,
F.
,
Devos
,
T.
,
Humer
,
A.
, and
Gerstmayr
,
J.
,
2020
, “
A Noninvasive System‐Level Model Order Reduction Scheme for Flexible Multibody Simulation
,”
Int. J. Numer. Methods Eng.
,
121
(
14
), pp.
3083
3107
.10.1002/nme.6348
54.
Tang
,
Y.
,
Hu
,
H.
, and
Tian
,
Q.
,
2021
, “
A Condensed Algorithm for Adaptive Component Mode Synthesis of Viscoelastic Flexible Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
122
(
2
), pp.
609
637
.10.1002/nme.6552
55.
Morzfeld
,
M.
,
Ajavakom
,
N.
, and
Ma
,
F.
,
2009
, “
Diagonal Dominance of Damping and the Decoupling Approximation in Linear Vibratory Systems
,”
J. Sound Vib.
,
320
(
1–2
), pp.
406
420
.10.1016/j.jsv.2008.07.025
56.
Foss
,
K. A.
,
1958
, “
Co-Ordinates Which Uncouple the Equations of Motion of Damped Linear Dynamic Systems
,”
ASME J. Appl. Mech.
,
25
(
3
), pp.
361
364
.10.1115/1.4011828
57.
Schmitz
,
P. D.
,
1973
, “
Normal Mode Solution to the Equations of Motion of a Flexible Airplane
,”
J. Aircr.
,
10
(
5
), pp.
318
320
.10.2514/3.44371
58.
Zhao
,
Y.
, and
Zhang
,
Y.
,
2016
, “
Improved Complex Mode Theory and Truncation and Acceleration of Complex Mode Superposition
,”
Adv. Mech. Eng.
,
8
(
10
), pp. 1–16.10.1177/1687814016671510
59.
Sun
,
P.
,
Zhang
,
S.
,
Yan
,
Y.
, and
Wang
,
D.
,
2023
, “
A Complex Mode Superposition Method Based on Hysteretic Damping Model for Mode Static Correction
,”
Int. J. Appl. Mech.
,
15
(
9
), p.
2350083
.10.1142/S1758825123500837
60.
Sun
,
P.
,
Yan
,
Y.
, and
Yang
,
H.
,
2024
, “
Complex Mode Superposition Method of Non-Classically Damped Systems Based on Hysteretic Damping Model With Frequency-Dependent Loss Factors
,”
J. Sound Vib.
,
571
, p.
118122
.10.1016/j.jsv.2023.118122
61.
Nachbagauer
,
K.
,
Gruber
,
P.
, and
Gerstmayr
,
J.
,
2013
, “
Structural and Continuum Mechanics Approaches for a 3D Shear Deformable ANCF Beam Finite Element: Application to Static and Linearized Dynamic Examples
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
2
), p. 021004.10.1115/1.4006787
62.
Dmitrochenko
,
O. N.
, and
Pogorelov
,
D. Y.
,
2003
, “
Generalization of Plate Finite Elements for Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
10
, pp.
17
43
.10.1023/A:1024553708730
63.
Tang
,
Y.
,
Hu
,
H.
, and
Tian
,
Q.
,
2019
, “
Model Order Reduction Based on Successively Local Linearizations for Flexible Multibody Dynamics
,”
Int. J. Numer. Methods Eng.
,
118
(
3
), pp.
159
180
.10.1002/nme.6011
64.
Yu
,
D.
, and
Peng
,
Z.
,
1990
, “
Improved Eigenvalue Modification Method and Its Application to Complex Modal Synthesis of Damped Structure
,”
J. Vib. Eng.
, 1990(01), pp.
47
55
(in Chinese).https://link.oversea.cnki.net/doi/10.16385/j.cnki.issn.1004-4523.1990.01.008
65.
Chen
,
L.
,
2021
, “
On the Concept of Modes
,”
Mech. Eng.
,
43
, pp.
252
255
(in Chinese).10.6052/1000-0879-20-430
66.
Arnold
,
M.
, and
Brüls
,
O.
,
2007
, “
Convergence of the Generalized-α Scheme for Constrained Mechanical Systems
,”
Multibody Syst. Dyn.
,
18
(
2
), pp.
185
202
.10.1007/s11044-007-9084-0
67.
Köbis
,
M. A.
, and
Arnold
,
M.
,
2016
, “
Convergence of Generalized-α Time Integration for Nonlinear Systems With Stiff Potential Forces
,”
Multibody Syst. Dyn.
,
37
(
1
), pp.
107
125
.10.1007/s11044-015-9495-2
68.
Nachbagauer
,
K.
,
Pechstein
,
A. S.
,
Irschik
,
H.
, and
Gerstmayr
,
J.
,
2011
, “
A New Locking-Free Formulation for Planar, Shear Deformable, Linear and Quadratic Beam Finite Elements Based on the Absolute Nodal Coordinate Formulation
,”
Multibody Syst. Dyn.
,
26
(
3
), pp.
245
263
.10.1007/s11044-011-9249-8
69.
Bauchau
,
O. A.
,
Han
,
S.
,
Mikkola
,
A.
,
Matikainen
,
M. K.
, and
Gruber
,
P.
,
2015
, “
Experimental Validation of Flexible Multibody Dynamics Beam Formulations
,”
Multibody Syst. Dyn.
,
34
(
4
), pp.
373
389
.10.1007/s11044-014-9430-y
70.
Gerstmayr
,
J.
,
Sugiyama
,
H.
, and
Mikkola
,
A.
,
2013
, “
Review on the Absolute Nodal Coordinate Formulation for Large Deformation Analysis of Multibody Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
3
), p. 031016.10.1115/1.4023487
71.
Ebel
,
H.
,
Matikainen
,
M. K.
,
Hurskainen
,
V.-V.
, and
Mikkola
,
A.
,
2017
, “
Higher-Order Beam Elements Based on the Absolute Nodal Coordinate Formulation for Three-Dimensional Elasticity
,”
Nonlinear Dyn.
,
88
(
2
), pp.
1075
1091
.10.1007/s11071-016-3296-x
72.
Patel
,
M.
, and
Shabana
,
A. A.
,
2018
, “
Locking Alleviation in the Large Displacement Analysis of Beam Elements: The Strain Split Method
,”
Acta Mech.
,
229
(
7
), pp.
2923
2946
.10.1007/s00707-018-2131-5
73.
Liu
,
C.
,
Tian
,
Q.
,
Hu
,
H.
, and
García-Vallejo
,
D.
,
2012
, “
Simple Formulations of Imposing Moments and Evaluating Joint Reaction Forces for Rigid-Flexible Multibody Systems
,”
Nonlinear Dyn.
,
69
(
1–2
), pp.
127
147
.10.1007/s11071-011-0251-8
You do not currently have access to this content.