Abstract

A data-driven model capable of predicting time-domain solutions of a high-fidelity tire–soil interaction model is developed to enable quick prediction of mobility capabilities on deformable terrain. The adaptive model order reduction based on the proper orthogonal decomposition (POD), for which the high-dimensional equations are projected onto the reduced subspace, is utilized as the basis for predicting the time-domain tire–soil interaction behavior. The projection-based model order reduction, however, requires many online matrix operations due to the successive updates of the nonlinear functions and Jacobians at every time-step, thereby hindering the computational improvement. Therefore, a data-driven approach using a long short-term memory (LSTM) neural network is introduced to predict the reduced order coordinates without the projection and time integration processes for computational speedup. With this model, a hybrid data-driven/physics-based off-road mobility model is proposed, where four separate LSTM-POD data-driven tire–soil interaction models are integrated into the physics-based multibody dynamics (MBD) vehicle model through a force–displacement coupling algorithm. By doing so, the individual data-driven tire–soil interaction model can be constructed efficiently, and the MBD and LSTM models are assembled as a single off-road mobility model and analyzed with existing off-road mobility solvers. The predictive ability and computational benefit of the proposed data-driven tire–soil interaction model with the POD-based model order reduction are examined with several numerical examples.

References

1.
Shoop
,
S. A.
,
2001
, “
Finite Element Modeling of Tire-Terrain Interaction
,”
Engineering Research and Development Center
,
Hanover, NH, Report
No. ERDC/CRREL-TR-01-16.
2.
Smith
,
W.
, and
Peng
,
H.
,
2013
, “
Modeling of Wheel–Soil Interaction Over Rough Terrain Using the Discrete Element Method
,”
J. Terramechanics
,
50
(
5–6
), pp.
277
287
.10.1016/j.jterra.2013.09.002
3.
Yamashita
,
H.
,
Jayakumar
,
P.
,
Alsaleh
,
M.
, and
Sugiyama
,
H.
,
2018
, “
Physics-Based Deformable Tire–Soil Interaction Model for Off-Road Mobility Simulation and Experimental Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021002
.10.1115/1.4037994
4.
Recuero
,
A.
,
Serban
,
R.
,
Peterson
,
B.
,
Sugiyama
,
H.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2017
, “
A High-Fidelity Approach for Vehicle Mobility Simulation: Nonlinear Finite Element Tires Operating on Granular Material
,”
J. Terramechanics
,
72
, pp.
39
54
.10.1016/j.jterra.2017.04.002
5.
Wasfy
,
T. M.
,
Jayakumar
,
P.
,
Mechergui
,
D.
, and
Sanikommu
,
S.
,
2018
, “
Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
,”
Int. J. Veh. Perform.
,
4
(
4
), pp.
347
381
.10.1504/IJVP.2018.095753
6.
El-Sayegh
,
Z.
,
El-Gindy
,
M.
,
Johansson
,
I.
, and
Öijer
,
F.
,
2018
, “
Improved Tire-Soil Interaction Model Using FEA-SPH Simulation
,”
J. Terramechanics
,
78
, pp.
53
62
.10.1016/j.jterra.2018.05.001
7.
Agarwal
,
S.
,
Senatore
,
C.
,
Zhang
,
T.
,
Kingsbury
,
M.
,
Iagnemma
,
K.
,
Goldman
,
D. I.
, and
Kamrin
,
K.
,
2019
, “
Modeling of the Interaction of Rigid Wheels With Dry Granular Media
,”
J. Terramechanics
,
85
, pp.
1
14
.10.1016/j.jterra.2019.06.001
8.
Tasora
,
A.
,
Serban
,
R.
,
Mazhar
,
H.
,
Pazouki
,
A.
,
Melanz
,
D.
,
Fleischmann
,
J.
,
Taylor
,
M.
,
Sugiyama
,
H.
, and
Negrut
,
D.
,
2015
, “
Chrono: An Open-Source Multi-Physics Dynamics Engine
,”
High-Performance Computing in Science and Engineering
,
Springer
, Berlin, Germany, pp.
19
49
.
9.
Corona
,
E.
,
Gorsich
,
D.
,
Jayakumar
,
P.
, and
Veerapaneni
,
S.
,
2019
, “
Tensor Train Accelerated Solvers for Nonsmooth Rigid Body Dynamics
,”
ASME Appl. Mech. Rev.
,
71
(
5
), p.
050804
.10.1115/1.4043324
10.
Yamashita
,
H.
,
Chen
,
G.
,
Ruan
,
Y.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2019
, “
Hierarchical Multiscale Modeling of Tire–Soil Interaction for Off-Road Mobility Simulation
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
6
), p.
061007
.10.1115/1.4042510
11.
Yamashita
,
H.
,
Chen
,
G.
,
Ruan
,
Y.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2020
, “
Parallelized Multiscale Off-Road Vehicle Mobility Simulation Algorithm and Full-Scale Vehicle Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
9
), p.
091007
.10.1115/1.4046666
12.
Chen
,
G.
,
Yamashita
,
H.
,
Ruan
,
Y.
,
Jayakumar
,
P.
,
Knap
,
J.
,
Leiter
,
K. W.
,
Yang
,
X.
, and
Sugiyama
,
H.
,
2021
, “
Enhancing Hierarchical Multiscale Off-Road Mobility Model by Neural Network Surrogate Model
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
8
), p.
081005
.10.1115/1.4051271
13.
Chen
,
G.
,
Yamashita
,
H.
,
Ruan
,
Y.
,
Jayakumar
,
P.
,
Gorsich
,
D.
,
Knap
,
J.
,
Leiter
,
K. W.
,
Yang
,
X.
, and
Sugiyama
,
H.
,
2023
, “
Hierarchical MPM-ANN Multiscale Terrain Model for High-Fidelity Off-Road Mobility Simulations: A Coupled MBD-FE-MPM-ANN Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
18
(
7
), p.
071001
.10.1115/1.4062204
14.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Rev. Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
15.
Kerschen
,
G.
,
Golinval
,
J. C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2005
, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
147
169
.10.1007/s11071-005-2803-2
16.
Schilders
,
W.
,
2008
, “
Introduction to Model Order Reduction
,”
Model Order Reduction: Theory, Research Aspects and Applications
,
Springer
,
Berlin, Germany
, pp.
3
32
.
17.
Lassila
,
T.
,
Manzoni
,
A.
,
Quarteroni
,
A.
, and
Rozza
,
G.
,
2014
, “
Model Order Reduction in Fluid Dynamics: Challenges and Perspectives
,”
Reduced Order Methods for Modeling and Computational Reduction
,
Springer
,
Cham, Switzerland
, pp.
235
273
.
18.
Sullivan
,
C. C.
,
Yamashita
,
H.
, and
Sugiyama
,
H.
,
2022
, “
Reduced Order Modeling of Deformable Tire-Soil Interaction With Proper Orthogonal Decomposition
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
5
), p.
051009
.10.1115/1.4053592
19.
Amsallem
,
D.
, and
Farhat
,
C.
,
2008
, “
Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity
,”
AIAA J.
,
46
(
7
), pp.
1803
1813
.10.2514/1.35374
20.
Lu
,
Y.
,
Blal
,
N.
, and
Gravouil
,
A.
,
2018
, “
Space–Time POD Based Computational Vademecums for Parametric Studies: Application to Thermo-Mechanical Problems
,”
Adv. Model. Simul. Eng. Sci.
,
5
(
1
), p.
3
.10.1186/s40323-018-0095-6
21.
Brunton
,
S. L.
,
Noack
,
B. R.
, and
Koumoutsakos
,
P.
,
2020
, “
Machine Learning for Fluid Mechanics
,”
Annu. Rev. Fluid Mech.
,
52
(
1
), pp.
477
508
.10.1146/annurev-fluid-010719-060214
22.
Kochkov
,
D.
,
Smith
,
J. A.
,
Alieva
,
A.
,
Wang
,
Q.
,
Brenner
,
M. P.
, and
Hoyer
,
S.
,
2021
, “
Machine Learning–Accelerated Computational Fluid Dynamics
,”
Proc. Natl. Acad. Sci.
,
118
(
21
), p.
e2101784118
.10.1073/pnas.2101784118
23.
Choi
,
H. S.
,
An
,
J.
,
Han
,
S.
,
Kim
,
J. G.
,
Jung
,
J. Y.
,
Choi
,
J.
,
Orzechowski
,
G.
,
Mikkola
,
A.
, and
Choi
,
J. H.
,
2021
, “
Data-Driven Simulation for General-Purpose Multibody Dynamics Using Deep Neural Networks
,”
Multibody Syst. Dyn.
,
51
(
4
), pp.
419
454
.10.1007/s11044-020-09772-8
24.
Go
,
M. S.
,
Han
,
S.
,
Lim
,
J. H.
, and
Kim
,
J. G.
,
2024
, “
An Efficient Fixed-Time Increment-Based Data-Driven Simulation for General Multibody Dynamics Using Deep Neural Networks
,”
Eng. Comput.
,
40
(
1
), pp.
323
341
.10.1007/s00366-023-01793-z
25.
Karapiperis
,
K.
,
Stainier
,
L.
,
Ortiz
,
M.
, and
Andrade
,
J. E.
,
2021
, “
Data-Driven Multiscale Modeling in Mechanics
,”
J. Mech. Phys. Solids
,
147
, p.
104239
.10.1016/j.jmps.2020.104239
26.
Hesthaven
,
J. S.
, and
Ubbiali
,
S.
,
2018
, “
Non-Intrusive Reduced Order Modeling of Nonlinear Problems Using Neural Networks
,”
J. Comput. Phys.
,
363
, pp.
55
78
.10.1016/j.jcp.2018.02.037
27.
Wang
,
Z.
,
Xiao
,
D.
,
Fang
,
F.
,
Govindan
,
R.
,
Pain
,
C. C.
, and
Guo
,
Y.
,
2018
, “
Model Identification of Reduced Order Fluid Dynamics Systems Using Deep Learning
,”
Int. J. Numer. Methods Fluids
,
86
(
4
), pp.
255
268
.10.1002/fld.4416
28.
Hong
,
S. H.
,
House
,
A.
,
Kaminsky
,
A. L.
,
Tison
,
N.
,
Ruan
,
Y.
,
Korivi
,
V.
,
Wang
,
Y.
, and
Pant
,
K.
,
2021
, “
Machine Learning-Based Thermal and Flow Simulation on Heterogeneous Platform for Signature Prediction
,”
Proceedings of the Ground Vehicle Systems Engineering and Technology Symposium
, Novi, MI, Aug. 10–12, pp.
1
10
.http://gvsets.ndiamich.org/documents/MS2/2021/MS2%20140PM%20Machine%20Learning%20Based%20Thermal%20and%20Flow%20Simulation%20on%20Heterogeneous%20Platform%20for%20Signature%20Prediction.pdf
29.
Abadía-Heredia
,
R.
,
López-Martín
,
M.
,
Carro
,
B.
,
Arribas
,
J. I.
,
Pérez
,
J. M.
, and
Le Clainche
,
S.
,
2022
, “
A Predictive Hybrid Reduced Order Model Based on Proper Orthogonal Decomposition Combined With Deep Learning Architectures
,”
Expert Syst. Appl.
,
187
, p.
115910
.10.1016/j.eswa.2021.115910
30.
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2016
, “
Physics-Based Flexible Tire Model Integrated With LuGre Tire Friction for Transient Braking and Cornering Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031017
.10.1115/1.4032855
31.
de Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R.
,
2011
,
Computational Methods for Plasticity: Theory and Applications
,
Wiley
,
Hoboken, NJ
.
32.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.10.1162/neco.1997.9.8.1735
33.
Chollet
,
F.
,
2021
,
Deep Learning With Python
,
Simon and Schuster
,
New York
.
34.
Choi
,
K. K.
,
Jayakumar
,
P.
,
Funk
,
M.
,
Gaul
,
N.
, and
Wasfy
,
T. M.
,
2019
, “
Framework of Reliability-Based Stochastic Mobility Map for Next Generation NATO Reference Mobility Model
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
2
), p.
021012
.10.1115/1.4041350
35.
Mechergui
,
D.
, and
Jayakumar
,
P.
,
2020
, “
Efficient Generation of Accurate Mobility Maps Using Machine Learning Algorithms
,”
J. Terramechanics
,
88
, pp.
53
63
.10.1016/j.jterra.2019.12.002
36.
Marple
,
G. R.
,
Gorsich
,
D.
,
Jayakumar
,
P.
, and
Veerapaneni
,
S.
,
2021
, “
An Active Learning Framework for Constructing High-Fidelity Mobility Maps
,”
IEEE Trans. Veh. Technol.
,
70
(
10
), pp.
9803
9813
.10.1109/TVT.2021.3107338
37.
Dallas
,
J.
,
Cole
,
M. P.
,
Jayakumar
,
P.
, and
Ersal
,
T.
,
2021
, “
Terrain Adaptive Trajectory Planning and Tracking on Deformable Terrains
,”
IEEE Trans. Veh. Technol.
,
70
(
11
), pp.
11255
11268
.10.1109/TVT.2021.3114088
You do not currently have access to this content.