Abstract

Robots encountering other robots in a group can be beneficial, e.g., to exchange information, or detrimental, e.g., obstructing one another from operating. Kinetic gas theory (KGT) provides a statistical mechanical analysis of the collision rate between molecules. KGT has been applied to model robot encounter rates but there has been some inconsistency in how it has been applied to robot groups. There is a nine order of magnitude difference in size between a typical robot and molecule, so it is not a surprise that some adjustments may need to be made when considering robots instead of molecules. This work develops a model in detail by applying KGT, articulates limitations of applying this theory to robots, highlights inconsistencies in how it has been previously applied to robots, and suggests modifications to the model. A simple numerical study is also shown to validate the model and highlight the effect of differences in the implementation. The most important gap that this research has identified is the need to collect data on the magnitude and direction distribution of robots' velocities. Robots move and behave differently than gas molecules, whose velocity magnitude follow a Boltzmann distribution. A second major result is the connection of the KGT-based model developed in this work and previous research on robot encounter rate which independently arrived at the same relationship between robot size, number of robots, and encounter rate.

References

1.
Atkins
,
P. W.
,
De Paulo
,
J.
, and
Keeler
,
J.
,
2018
,
Atkins' Physical Chemistry
, 11th ed.,
Oxford University Press
,
Oxford, NY
.
2.
Brambilla
,
M.
,
Ferrante
,
E.
,
Birattari
,
M.
, and
Dorigo
,
M.
,
2013
, “
Swarm Robotics: A Review From the Swarm Engineering Perspective
,”
Swarm Intell.
,
7
(
1
), pp.
1
41
.10.1007/s11721-012-0075-2
3.
Hamann
,
H.
,
Wörn
,
H.
,
Crailsheim
,
K.
, and
Schmickl
,
T.
,
2008
, “
Spatial Macroscopic Models of a Bio-Inspired Robotic Swarm Algorithm
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, Nice, France, Sept. 22–26, pp.
1415
1420
.10.1109/IROS.2008.4651038
4.
Trautz
,
M.
,
1916
, “
Das Gesetz Der Reaktionsgeschwindigkeit Und Der Gleichgewichte in Gasen. Bestätigung Der Additivität Von Cv‐3/2R. Neue Bestimmung Der Integrationskonstanten Und Der Moleküldurchmesser
,”
Z. Für Anorg. und Allg. Chem.
,
96
(
1
), pp.
1
28
.10.1002/zaac.19160960102
5.
Bayindir
,
L.
,
2012
,
A Probabilistic Geometric Model of Self-Organized Aggregation in Swarm Robotic Systems
,
Middle East Technical University
, Ph.D. thesis, Middle East Technical University, Çankaya Ankara, Turkey.
6.
Jeanson
,
R.
,
Blanco
,
S.
,
Fournier
,
R.
,
Deneubourg
,
J. L.
,
Fourcassié
,
V.
, and
Theraulaz
,
G.
,
2003
, “
A Model of Animal Movements in a Bounded Space
,”
J. Theor. Biol.
,
225
(
4
), pp.
443
451
.10.1016/S0022-5193(03)00277-7
7.
Kernbach
,
S.
,
Häbe
,
D.
,
Kernbach
,
O.
,
Thenius
,
R.
,
Radspieler
,
G.
,
Kimura
,
T.
, and
Schmickl
,
T.
,
2013
, “
Adaptive Collective Decision-Making in Limited Robot Swarms Without Communication
,”
Int. J. Rob. Res.
,
32
(
1
), pp.
35
55
.10.1177/0278364912468636
8.
Kernbach
,
S.
,
Thenius
,
R.
,
Kernbach
,
O.
, and
Schmickl
,
T.
,
2009
, “
Re-Embodiment of Honeybee Aggregation Behavior in an Artificial Micro-Robotic System
,”
Adapt. Behav.
,
17
(
3
), pp.
237
259
.10.1177/1059712309104966
9.
Schmickl
,
T.
,
Hamann
,
H.
,
Wörn
,
H.
, and
Crailsheim
,
K.
,
2009
, “
Two Different Approaches to a Macroscopic Model of a Bio-Inspired Robotic Swarm
,”
Rob. Auton. Syst.
,
57
(
9
), pp.
913
921
.10.1016/j.robot.2009.06.002
10.
Correll
,
N.
, and
Martinoli
,
A.
,
2011
, “
Modeling and Designing Self-Organized Aggregation in a Swarm of Miniature Robots
,”
Int. J. Rob. Res.
,
30
(
5
), pp.
615
626
.10.1177/0278364911403017
11.
Correll
,
N.
, and
Martinoli
,
A.
,
2008
, “
Modeling and Optimization of a Swarm-Intelligent Inspection System
,”
Distrib. Auton. Robot. Syst.
,
6
, pp.
369
378
.https://link.springer.com/chapter/10.1007/978-4-431-35873-2_36
12.
Mayya
,
S.
,
Pierpaoli
,
P.
,
Nair
,
G.
, and
Egerstedt
,
M.
,
2019
, “
Localization in Densely Packed Swarms Using Interrobot Collisions as a Sensing Modality
,”
IEEE Trans. Robot.
,
35
(
1
), pp.
21
34
.10.1109/TRO.2018.2872285
13.
Mayya
,
S.
,
Pierpaoli
,
P.
, and
Egerstedt
,
M.
,
2019
, “
Voluntary Retreat for Decentralized Interference Reduction in Robot Swarms
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Montreal, QC, Canada, May 20–24, pp.
9667
9673
.10.1109/ICRA.2019.8794124
14.
Mataric
,
M. J.
,
1992
, “Controlling a Mobile Robot Herd: Theory and Practice, Applications of Artificial Intelligence to Real-World Autonomous Mobile Robots. Papers From the 1992 Fall Symposium, Technical Report No. FS-92.
15.
Lerman
,
K.
, and
Galstyan
,
A.
,
2002
, [Online]. Available: “
Mathematical Model of Foraging in a Group of Robots: Effect of Interference
,”
Auton. Robots
,
13
(
2
), pp.
127
141
.10.1023/A:1019633424543
16.
Rosenfeld
,
A.
,
Kaminka
,
G. A.
, and
Kraus
,
S.
,
2006
, “
A Study of Scalability Properties in Robotic Teams
,”
Coordination Large-Scale Multiagent Systems
, Springer, Boston, pp.
27
51
.10.1007/0-387-27972-5
17.
Beckers
,
R.
,
Holland
,
O. E.
, and
Deneubourg
,
J.-L.
,
2000
, “
Fom Local Actions to Global Tasks: Stigmergy and Collective Robotics
,”
Prerational Intelligence: Adaptive Behavior and Intelligent Systems Without Symbols and Logic
,
Springer
,
Dordrecht
, pp.
1008
1022
.
18.
Hamann
,
H.
,
2012
, “
Towards Swarm Calculus: Universal Properties
,”
Swarm Intelligence ANTS 2012. Lecture Notes in Computer Science
, Vol.
7461
,
Springer
,
Berlin, Heidelberg
, pp.
168
179
.
19.
Schroeder
,
A.
,
Trease
,
B.
, and
Arsie
,
A.
,
2019
, “
Balancing Robot Swarm Cost and Interference Effects by Varying Robot Quantity and Size
,”
Swarm Intell.
,
13
(
1
), pp.
1
19
.10.1007/s11721-018-0161-1
20.
Lewis
,
W. C. M.
,
1918
, “
Studies in Catalysis. PART IX. THE Calculation in Absolute Measure of Velocity Constants and Equilibrium Constants in Gaseous Systems
,”
J. Chem. Soc., Trans.
,
113
(
0
), pp.
471
492
.10.1039/CT9181300471
21.
Bird
,
R. B.
,
Stewart
,
W. E.
, and
Lightfoot
,
E. N.
,
2007
,
Transport Phenomena
, 2nd ed.,
Wiley Inc
.,
New York
.
22.
Codling
,
E. A.
,
Plank
,
M. J.
, and
Benhamou
,
S.
,
2008
, “
Random Walk Models in Biology
,”
J. R. Soc. Interface
,
5
(
25
), pp.
813
834
.10.1098/rsif.2008.0014
23.
Dimidov
,
C.
,
Oriolo
,
G.
, and
Trianni
,
V.
,
2016
, “
Random Walks in Swarm Robotics: An Experiment With Kilobots
,”
Proceedings of the 10th International Conference on Swarm Intelligence
, Springer, Berlin, pp.
185
196
.
24.
Garg
,
S.
,
Bansal
,
R. M.
, and
Ghosh
,
C. K.
,
2013
,
Thermal Physics Kinetic Theory, Thermodynamics and Statistical Mechanics
, 2nd ed.,
McGraw-Hill
, India.
25.
Farrow
,
N.
,
Klingner
,
J.
,
Reishus
,
D.
, and
Correll
,
N.
,
2014
, “
Miniature Six-Channel Range and Bearing System: Algorithm, Analysis and Experimental Validation
,” Proceedings of 2014 IEEE International Conference on Robotics and Automation (
ICRA
), Hong Kong, China, May 31–June 7, pp.
6180
6185
.10.1109/ICRA.2014.6907770
26.
Kunze
,
S.
,
Groll
,
R.
,
Besser
,
B.
, and
Thöming
,
J.
,
2022
, “
Molecular Diameters of Rarefied Gases
,”
Sci. Rep.
,
12
(
1
), p.
2057
.10.1038/s41598-022-05871-y
You do not currently have access to this content.