Abstract

This work presents a tool that performs simulations in nonlinear vibration analysis. It can be used to appraise the structure's functionality and to determine the loading effects. Oscillations are fundamental in nature, appearing in practical engineering applications. General nonlinear problems hardly have analytical solutions, requiring sophisticated techniques to reach approximate solutions. This toolbox is an open-source Python implementation of a robust multiharmonic balance with predictor–corrector numerical continuation, Newton–Raphson root-solver, and forward automatic differentiation with dual numbers, which is a novelty. It shows promising converging robustness, especially in the construction of frequency response curves, when dealing with polynomial as well as sharp nonlinearities, such as dry-friction.

References

1.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
,
Mathematical Engineering Springer International Publishing
,
Cham, Switzerland
.
2.
Kerschen
,
G.
,
Peeters
,
M.
,
Golinval
,
J. C.
, and
Vakakis
,
A. F.
,
2009
, “
Nonlinear Normal Modes, Part i: A Useful Framework for the Structural Dynamicist
,”
Mech. Syst. Signal Process.
,
23
(
1
), pp.
170
194
.10.1016/j.ymssp.2008.04.002
3.
Moon
,
F. C.
,
1987
,
Chaotic Vibrations: An Introduction for Applied Scientists and Engineers
,
Wiley-VCH
, Weinheim, Germany
.
4.
Brake
,
M. R.
, ed.,
2017
,
The Mechanics of Jointed Structures
,
Springer
,
Cham, Switzerland
.
5.
Kim
,
T. C.
,
Rook
,
T. E.
, and
Singh
,
R.
,
2005
, “
Super- and Sub-Harmonic Response Calculations for a Torsional System With Clearance Nonlinearity Using the Harmonic Balance Method
,”
J. Sound Vib.
,
281
(
3–5
), pp.
965
993
.10.1016/j.jsv.2004.02.039
6.
Süß
,
D.
,
2016
, “
Multi-Harmonische-Balance-Methoden Zur Untersuchung Des Übertragungsverhaltens Von Strukturen Mit Fügestellen
,” Doctoral thesis,
Der Technischen Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg
, Erlangen.
7.
Woiwode
,
L.
,
Balaji
,
N. N.
,
Kappauf
,
J.
,
Tubita
,
F.
,
Guillot
,
L.
,
Vergez
,
C.
,
Cochelin
,
B.
,
Grolet
,
A.
, and
Krack
,
M.
,
2020
, “
Comparison of Two Algorithms for Harmonic Balance and Path Continuation
,”
Mech. Syst. Signal Process.
,
136
, p.
106503
.10.1016/j.ymssp.2019.106503
8.
Grolet
,
A.
, and
Thouverez
,
F.
,
2012
, “
On a New Harmonic Selection Technique for Harmonic Balance Method
,”
Mech. Syst. Signal Process.
,
30
, pp.
43
60
.10.1016/j.ymssp.2012.01.024
9.
Süß
,
D.
, and
Willner
,
K.
,
2015
, “
Investigation of a Jointed Friction Oscillator Using the Multiharmonic Balance Method
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
73
87
.10.1016/j.ymssp.2014.08.003
10.
Detroux
,
T.
,
Renson
,
L.
, and
Kerschen
,
G.
,
2014
, “
The Harmonic Balance Method for Advanced Analysis and Design of Nonlinear Mechanical Systems
,”
Nonlinear Dynamics
, Vol.
2
,
G.
Kerschen
ed.,
Springer International Publishing
,
Cham, Switzerland
, pp.
19
34
.
11.
von Groll
,
G.
, and
Ewins
,
D.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.10.1006/jsvi.2000.3298
12.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
13.
Guillen
,
J.
, and
Pierre
,
C.
,
1999
, “
An Efficient, Hybrid, Frequency-Time Domain Method for the Dynamics of Large-Scale Dry-Friction Damped Structural Systems
,”
IUTAM Symposium on Unilateral Multibody Contacts
,
F.
Pfeiffer
, and
C.
Glocker
, eds.,
Springer
,
Dordrecht, The Netherlands
, pp.
169
178
.
14.
Jacquet-Richardet
,
G.
,
Torkhani
,
M.
,
Cartraud
,
P.
,
Thouverez
,
F.
,
Nouri Baranger
,
T.
,
Herran
,
M.
,
Gibert
,
C.
,
Baguet
,
S.
,
Almeida
,
P.
, and
Peletan
,
L.
,
2013
, “
Rotor to Stator Contacts in Turbomachines review and Application
,”
Mech. Syst. Signal Process.
,
40
(
2
), pp.
401
420
.10.1016/j.ymssp.2013.05.010
15.
Zucca
,
S.
, and
Firrone
,
C.
,
2014
, “
Nonlinear Dynamics of Mechanical Systems With Friction Contacts: Coupled Static and Dynamic Multi-Harmonic Balance Method and Multiple Solutions
,”
J. Sound Vib.
,
333
(
3
), pp.
916
926
.10.1016/j.jsv.2013.09.032
16.
Moussi
,
E. H.
,
Bellizzi
,
S.
,
Cochelin
,
B.
, and
Nistor
,
I.
,
2015
, “
Nonlinear Normal Modes of a Two Degrees-of-Freedom Piecewise Linear System
,”
Mech. Syst. Signal Process.
,
64–65
, pp.
266
281
.10.1016/j.ymssp.2015.03.017
17.
Cochelin
,
B.
,
Damil
,
N.
, and
Potier-Ferry
,
M.
,
1994
, “
The Asymptotic-Numerical Method: An Efficient Perturbation Technique for Nonlinear Structural Mechanics
,”
Rev. Eur. Des Éléments Finis.
,
3
(
2
), pp.
281
297
.10.1080/12506559.1994.10511124
18.
Cochelin
,
B.
, and
Vergez
,
C.
,
2009
, “
A High Order Purely Frequency-Based Harmonic Balance Formulation for Continuation of Periodic Solutions
,”
J. Sound Vib.
,
324
(
1–2
), pp.
243
262
.10.1016/j.jsv.2009.01.054
19.
Karkar
,
S.
,
Cochelin
,
B.
, and
Vergez
,
C.
,
2013
, “
A High-Order, Purely Frequency Based Harmonic Balance Formulation for Continuation of Periodic Solutions: The Case of Non-Polynomial Nonlinearities
,”
J. Sound Vib.
,
332
(
4
), pp.
968
977
.10.1016/j.jsv.2012.09.033
20.
Guillot
,
L.
,
Cochelin
,
B.
, and
Vergez
,
C.
,
2019
, “
A Taylor Series-Based Continuation Method for Solutions of Dynamical Systems
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2827
2845
.10.1007/s11071-019-04989-5
21.
Guillot
,
L.
,
Cochelin
,
B.
, and
Vergez
,
C.
,
2019
, “
A Generic and Efficient Taylor Series–Based Continuation Method Using a Quadratic Recast of Smooth Nonlinear Systems
,”
Int. J. Numer. Methods Eng.
,
119
(
4
), pp.
261
280
.10.1002/nme.6049
22.
Lazarus
,
A.
, and
Thomas
,
O.
,
2010
, “
A Harmonic-Based Method for Computing the Stability of Periodic Solutions of Dynamical Systems
,”
C. R. Méc.
,
338
(
9
), pp.
510
517
.10.1016/j.crme.2010.07.020
23.
Jahn
,
M.
,
Tatzko
,
S.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2019
, “
Comparison of Different Harmonic Balance Based Methodologies for Computation of Nonlinear Modes of Non-Conservative Mechanical Systems
,”
Mech. Syst. Signal Process.
,
127
, pp.
159
171
.10.1016/j.ymssp.2019.03.005
24.
Krack
,
M.
,
2015
, “
Nonlinear Modal Analysis of Nonconservative Systems:Extension of the Periodic Motion Concept
,”
Comput. Struct.
,
154
, pp.
59
71
.10.1016/j.compstruc.2015.03.008
25.
Petrov
,
E. P.
, and
Ewins
,
D. J.
,
2003
, “
Analytical Formulation of Friction Interface Elements for Analysis of Nonlinear Multi-Harmonic Vibrations of Bladed Disks
,”
AMSE J. Turbomach.
,
125
(
2
), pp.
364
371
.10.1115/1.1539868
26.
Ju
,
R.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2021
, “
An Efficient Galerkin Averaging-Incremental Harmonic Balance Method for Nonlinear Dynamic Analysis of Rigid Multibody Systems Governed by Differential–Algebraic Equations
,”
Nonlinear Dyn.
,
105
(
1
), pp.
475
498
.10.1007/s11071-021-06367-6
27.
Urabe
,
M.
,
1965
, “
Galerkin's Procedure for Nonlinear Periodic Systems
,”
Archive Rational Mech. Anal.
,
20
(
2
), pp.
120
152
.10.1007/BF00284614
28.
Chu
,
F.
, and
Zhang
,
Z.
,
1997
, “
Periodic, Quasi-Periodic and Chaotic Vibrations of a Rub-Impact Rotor System Supported on Oil Film Bearings
,”
Int. J. Eng. Sci.
,
35
(
10–11
), pp.
963
973
.10.1016/S0020-7225(97)89393-7
29.
Stoer
,
J.
, and
Bulirsch
,
R.
,
2002
,
Introduction to Numerical Analysis
, 3rd ed.,
Springer
,
New York
.
30.
Jokinen
,
H.
, and
Valtonen
,
M.
,
1996
, “
Steady-State Time-Domain Analysis Method With Variable Time Step Integration
,”
Proceedings of Third International Conference on Electronics, Circuits, and Systems
, Vol. 2, Rhodes, Greece, Oct., pp.
1139
1142
.
31.
Stoykov
,
S.
, and
Margenov
,
S.
,
2014
, “
Numerical Computation of Periodic Responses of Nonlinear Large-Scale Systems by Shooting Method
,”
Comput. Math. Appl.
,
67
(
12
), pp.
2257
2267
.10.1016/j.camwa.2014.01.023
32.
Allgower
,
E. L.
, and
Georg
,
K.
,
2003
,
Introduction to Numerical Continuation Methods
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
33.
Charpentier
,
I.
, and
Cochelin
,
B.
,
2018
, “
Towards a Full Higher Order Ad-Based Continuation and Bifurcation Framework
,”
Optim. Methods Software
,
33
(
4–6
), pp.
945
962
.10.1080/10556788.2018.1428604
34.
Widder
,
D. V.
,
1989
,
Advanced Calculus
,
Dover Publications
,
Mineola, NY
.
35.
Arias de Reyna
,
J.
,
2002
,
The Charleson-Hunt Theorem
,
Springer Berlin Heidelberg
,
Berlin/Heidelberg
, pp.
47
49
.
36.
Martins
,
J. R. R. A.
, and
Ning
,
A.
,
2021
,
Engineering Design Optimization
,
Cambridge University Press
,
Cambridge, UK
.
37.
Baydin
,
A. G.
,
Pearlmutter
,
B. A.
,
Radul
,
A. A.
, and
Siskind
,
J. M.
,
2017
, “
Automatic Differentiation in Machine Learning: A Survey
,”
J. Mach. Learn. Res.
,
18
(
1
), pp.
5595
5637
.10.5555/3122009.3242010
38.
Angeles
,
J.
,
1998
, “
The Application of Dual Algebra to Kinematic Analysis
,”
Computational Methods in Mechanical Systems: Mechanism Analysis, Synthesis, and Optimization
, Springer, Berlin/Heidelberg, pp.
3
32
.
39.
Vakakis
,
A. F.
,
1992
, “
Fundamental and Subharmonic Resonances in a System With a ‘1-1’ Internal Resonance
,”
Nonlinear Dyn.
,
3
(
2
), pp.
123
143
.10.1007/BF00118989
40.
Hodges
,
D. H.
, and
Pierce
,
G. A.
,
2011
,
Introduction to Structural Dynamics and Aeroelasticity
, 2nd ed., Cambridge Aerospace Series,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.