Abstract

In this article, we focus on the relations between the asymptotics of solutions and the sensitivity to initial values of fractional differential systems. To investigate this problem, we consider the ψ-fractional calculus, which is considered to be a generalization of those of Riemann–Liouville and Hadamard. For this purpose, we define Lyapunov exponents for ψ-fractional differential systems and estimate their upper bounds. Examples are presented to demonstrate the accuracy of our results.

References

1.
Tarasov
,
E. V.
, and
Tarasova
,
V. V.
,
2021
,
Economic Dynamics With Memory: Fractional Calculus Approach
,
De Gruyter
,
Berlin, Germany
.
2.
Li
,
C. P.
, and
Cai
,
M.
,
2019
,
Theory and Numerical Approximations of Fractional Integrals and Derivatives
,
Siam
,
Philadelphia, PA
.
3.
Han
,
J. F.
,
Li
,
C. P.
, and
Zeng
,
S. D.
,
2022
, “
Applications of Generalized Fractional Hemivariational Inequalities in Solid Viscoelastic Contact Mechanics
,”
Commun. Nonlinear Sci. Numer. Simul.
,
115
, p.
106718
.10.1016/j.cnsns.2022.106718
4.
Li
,
C. P.
, and
Li
,
Z. Q.
,
2021
, “
Stability and ψ-Algebraic Decay of the Solution to ψ-Fractional Differential System
,”
Int. J. Nonlinear Sci. Numer. Simul.
, epub.10.1515/ijnsns-2021-0189
5.
Kilbas
,
A. A.
,
Srivastava
,
H. M.
, and
Trujillo
,
J. J.
,
2006
,
Theory and Applications of Fractional Differential Equations
,
Elsevier Science
,
Amsterdam, The Netherlands
.
6.
Samko
,
S. G.
,
Kilbas
,
A. A.
, and
Marichev
,
O. I.
,
1993
,
Fractional Integrals and Derivatives: Theory and Applications
,
Gordon and Breach Science Publishers
,
Amsterdam, The Netherlands
.
7.
Hadamard
,
J.
,
1892
, “
Essai Sur L'étude Des Functions Données Par Leur Développement de Taylor
,”
J. Math. Pures Appl.
,
8
(
4
), pp.
101
186
.http://portail.mathdoc.fr/JMPA/afficher_notice.php?id=JMPA_1892_4_8_A4_0
8.
Ma
,
L.
, and
Wu
,
B.
,
2023
, “
On the Fractional Lyapunov Exponent for Hadamard-Type Fractional Differential System
,”
Chaos
,
33
(
1
), p.
013117
.10.1063/5.0131661
9.
Jarad
,
F.
, and
Abdeljawad
,
T.
,
2020
, “
Generalized Fractional Derivatives and Laplace Transform
,”
Discrete Contin. Dyn. Syst. Ser. S
,
13
(
3
), pp.
709
722
.10.3934/dcdss.2020039
10.
Fan
,
E. Y.
,
Li
,
C. P.
, and
Stynes
,
M.
,
2023
, “
Discretized General Fractional Derivative
,”
Math. Comput. Simul.
,
208
, pp.
501
534
.10.1016/j.matcom.2023.01.030
11.
Li
,
C. P.
,
Li
,
Z. Q.
, and
Yin
,
C. T.
,
2022
, “
Which Kind of Fractional Partial Differential Equations Has Solution With Exponential Asymptotics?
,”
Proceedings of the International Conference on Fractional Differentiation and Its Applications (ICFDA'21)
, Poland, Sept. 6–8,
A.
Dzielinski
,
D.
Sierociuk
, and
P.
Ostalczyk
, eds.,
Springer
,
Cham, Switzerland
, pp.
112
117
.
12.
Cai
,
M.
,
Karniadakis
,
G. E.
, and
Li
,
C. P.
,
2022
, “
Fractional SEIR Model and Data-Driven Predictions of COVID-19 Dynamics of Omicron Variant
,”
Chaos
,
32
(
7
), p.
071101
.10.1063/5.0099450
13.
Fan
,
E. Y.
,
Li
,
C. P.
, and
Li
,
Z. Q.
,
2023
, “
Numerical Methods for the Caputo-Type Fractional Derivative With an Exponential Kernel
,”
J. Appl. Anal. Comput.
,
13
(
1
), pp.
376
423
.10.11948/20220177
14.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
15.
Li
,
C. P.
,
Gong
,
Z. Q.
,
Qian
,
D. L.
, and
Chen
,
Y. Q.
,
2010
, “
On the Bound of the Lyapunov Exponents for the Fractional Differential Systems
,”
Chaos
,
20
(
1
), p.
013127
.10.1063/1.3314277
16.
Li
,
C. P.
, and
Yin
,
C. T.
,
2021
, “
An Estimate of the Bound of the Lyapunov Exponents for Caputo-Hadamard Fractional Differential System
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
7
), p.
071002
.10.1115/1.4051024
17.
N'Gbo
,
N.
, and
Tang
,
J. H.
,
2022
, “
On the Lyapunov Exponents of Fractional Differential Systems With an Exponential Kernel
,”
Int. J. Bifurcation Chaos
,
32
(
12
), p.
2250188
.10.1142/S0218127422501887
18.
Li
,
C. P.
, and
Li
,
Z. Q.
,
2021
, “
Stability and Logarithmic Decay of the Solution to Hadamard-Type Fractional Differential Equation
,”
J. Nonlinear Sci.
,
31
(
2
), p.
31
.10.1007/s00332-021-09691-8
19.
Ye
,
H. P.
,
Gao
,
J. M.
, and
Ding
,
Y. S.
,
2007
, “
A Generalized Gronwall Inequality and Its Application to a Fractional Differential Equation
,”
J. Math. Anal. Appl.
,
328
(
2
), pp.
1075
1081
.10.1016/j.jmaa.2006.05.061
20.
Li
,
C. P.
, and
Chen
,
G. R.
,
2003
, “
On the Marotto-Li-Chen Theorem and Its Application to Chaotification of Multi-Dimensional Discrete Dynamical Systems
,”
Chaos, Solitons Fractals
,
18
(
4
), pp.
807
817
.10.1016/S0960-0779(03)00032-8
You do not currently have access to this content.