Abstract

Origami has great potential for creating deployable structures, however, most studies have focused on their static or kinematic features, while the complex and yet important dynamic behaviors of the origami deployment process have remained largely unexplored. In this research, we construct a dynamic model of a Miura origami sheet that captures the combined panel inertial and flexibility effects, which are otherwise ignored in rigid folding kinematic models but are critical in describing the dynamics of origami deployment. Results show that by considering these effects, the dynamic deployment behavior would substantially deviate from a nominal kinematic unfolding path. Additionally, the pattern geometries influence the effective structural stiffness, and it is shown that subtle changes can result in qualitatively different dynamic deployment behaviors. These differences are due to the multistability of the Miura origami sheet, where the structure may snap between its stable equilibria during the transient deployment process. Lastly, we show that varying the deployment rate can affect the dynamic deployment configuration. These observations are original and these phenomena have not and cannot be derived using traditional approaches. The tools and outcomes developed from this research enable a deeper understanding of the physics behind origami deployment that will pave the way for better designs of origami-based deployable structures, as well as extend our fundamental knowledge and expand our comfort zone beyond current practice.

References

1.
Schenk
,
M.
,
Viquerat
,
A. D.
,
Seffen
,
K. A.
, and
Guest
,
S. D.
,
2014
, “
Review of Inflatable Booms for Deployable Space Structures: Packing and Rigidization
,”
J. Spacecr. Rockets
,
51
(
3
), pp.
762
778
.10.2514/1.A32598
2.
Shah
,
S. H.
, and
Lim
,
S.
,
2017
, “
Transformation From a Single Antenna to a Series Array Using Push/Pull Origami
,”
J. Sens.
,
17
(
9
), p. 1968.10.3390/s17091968
3.
Ahmed
,
S.
,
Kamel
,
A.
, and
Mahmoud
,
W.
,
2020
, “
Methodology for Using Origami in Designing Deployable Shelters
,”
J. Des. Sci. Appl. Arts
,
1
(
2
), pp.
20
37
.10.21608/JDSAA.2020.28469.1016
4.
Miyashita
,
S.
,
Guitron
,
S.
,
Li
,
S.
, and
Rus
,
D.
,
2017
, “
Robotic Metamorphosis by Origami Exoskeletons
,”
Sci. Robot.
,
2
(
10
), p.
eaao4369
.10.1126/scirobotics.aao4369
5.
Gabler
,
F.
,
Karnaushenko
,
D. D.
,
Karnaushenko
,
D.
, and
Schmidt
,
O. G.
,
2019
, “
Magnetic Origami Creates High Performance Micro Devices
,”
Nat. Commun.
,
10
(
1
), p.
3013
.10.1038/s41467-019-10947-x
6.
Zhu
,
Y.
,
Birla
,
M.
,
Oldham
,
K. R.
, and
Filipov
,
E. T.
,
2020
, “
Elastically and Plastically Foldable Electrothermal Micro-Origami for Controllable and Rapid Shape Morphing
,”
Adv. Funct. Mater.
,
30
(
40
), p.
2003741
.10.1002/adfm.202003741
7.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
Inst. Sp. Astronaut. Sci. Rep
,
618
, pp.
1
9
.
8.
Callens
,
S. P.
, and
Zadpoor
,
A. A.
,
2018
, “
From Flat Sheets to Curved Geometries: Origami and Kirigami Approaches
,”
Mater. Today
,
21
(
3
), pp.
241
264
.10.1016/j.mattod.2017.10.004
9.
Lebée
,
A.
,
2015
, “
From Folds to Structures, a Review
,”
Int. J. Sp. Struct.
,
30
(
2
), pp.
55
74
.10.1260/0266-3511.30.2.55
10.
Tachi
,
T.
,
2010
, “
Origamizing Polyhedral Surfaces
,”
IEEE Trans. Vis. Comput. Graph
,
16
(
2
), pp.
298
311
.10.1109/TVCG.2009.67
11.
Liu
,
X.
,
Gattas
,
J. M.
, and
Chen
,
Y.
,
2016
, “
One-DOF Superimposed Rigid Origami With Multiple States
,”
Sci. Rep.
,
6
, pp.
1
9
.10.1038/srep36883
12.
Li
,
S.
,
Fang
,
H.
,
Sadeghi
,
S.
,
Bhovad
,
P.
, and
Wang
,
K. W.
,
2019
, “
Architected Origami Materials: How Folding Creates Sophisticated Mechanical Properties
,”
Adv. Mater.
,
31
(
5
), p.
1805282
.10.1002/adma.201805282
13.
Overvelde
,
J.
,
de Jong
,
T.
,
Shevchenko
,
Y.
,
Becerra
,
S. A.
,
Whitesides
,
G. M.
,
Weaver
,
J. C.
,
Hoberman
,
C.
, and
Bertoldi
,
K. A.
,
2016
, “
Three-Dimensional Actuated Origami-Inspired Transformable Metamaterial With Multiple Degrees of Freedom
,”
Nat. Commun.
,
7
, p.
10929
.10.1038/ncomms10929
14.
Li
,
S.
, and
Wang
,
K. W.
,
2015
, “
Fluidic Origami: A Plant-Inspired Adaptive Structure With Shape Morphing and Stiffness Tuning
,”
Smart Mater. Struct.
,
24
(
10
), p.
105031
.10.1088/0964-1726/24/10/105031
15.
Fang
,
H.
,
Li
,
S.
,
Ji
,
H.
, and
Wang
,
K. W.
,
2016
, “
Uncovering the Deformation Mechanisms of Origami Metamaterials by Introducing Generic Degree-Four Vertices
,”
Phys. Rev. E
,
94
(
4
), pp.
1
11
.10.1103/PhysRevE.94.043002
16.
Fang
,
H.
,
Li
,
S.
, and
Wang
,
K. W.
,
2016
, “
Self-Locking Degree-4 Vertex Origami Structures
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
472
(
2195
), p.
20160682
.10.1098/rspa.2016.0682
17.
Filipov
,
E. T.
,
Tachi
,
T.
,
Paulino
,
G. H.
, and
Weitz
,
D. A.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
40
), pp.
12321
12326
.10.1073/pnas.1509465112
18.
Li
,
S.
, and
Wang
,
K. W.
,
2015
, “
Fluidic Origami With Embedded Pressure Dependent Multi-Stability: A Plant Inspired Innovation
,”
J. R. Soc. Interface
,
12
(
111
), p.
20150639
.10.1098/rsif.2015.0639
19.
Li
,
S.
,
Fang
,
H.
, and
Wang
,
K. W.
,
2016
, “
Recoverable and Programmable Collapse From Folding Pressurized Origami Cellular Solids
,”
Phys. Rev. Lett.
,
117
(
11
), pp.
1
5
.10.1103/PhysRevLett.117.114301
20.
Ma
,
J.
,
Song
,
J.
, and
Chen
,
Y.
,
2018
, “
An Origami-Inspired Structure With Graded Stiffness
,”
Int. J. Mech. Sci.
,
136
, pp.
134
142
.10.1016/j.ijmecsci.2017.12.026
21.
Waitukaitis
,
S.
,
Menaut
,
R.
,
Chen
,
B. G.
, and
van Hecke
,
M.
,
2015
, “
Origami Multistability: From Single Vertices to Metasheets
,”
Phys. Rev. Lett.
,
114
(
5
), p.
055503
.10.1103/PhysRevLett.114.055503
22.
Fang
,
H.
,
Wang
,
K. W.
, and
Li
,
S.
,
2017
, “
Asymmetric Energy Barrier and Static Mechanical Diode Effect From Folding
,”
Ext. Mech. Lett
,
17
, pp.
7
15
.10.1016/j.eml.2017.09.008
23.
Sengupta
,
S.
, and
Li
,
S.
,
2018
, “
Harnessing the Anisotropic Multi-Stability of Stacked-Origami Mechanical Metamaterials for Elastic Modulus Programming
,”
J. Intell. Mater. Syst. Struct
,
29
(
14
), pp.
2933
2945
.10.1177/1045389X18781040
24.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.10.1088/0964-1726/23/9/094009
25.
Thota
,
M.
, and
Wang
,
K. W.
,
2017
, “
Reconfigurable Origami Sonic Barriers With Tunable Bandgaps for Traffic Noise Mitigation
,”
J. Appl. Phys
,
122
(
15
), p.
154901
.10.1063/1.4991026
26.
Thota
,
M.
,
Li
,
S.
, and
Wang
,
K. W.
,
2017
, “
Lattice Reconfiguration and Phononic Band-Gap Adaptation Via Origami Folding
,”
Phys. Rev. B
,
95
(
6
), pp.
1
10
.10.1103/PhysRevB.95.064307
27.
Yasuda
,
H.
,
Chong
,
C.
,
Charalampidis
,
E. G.
,
Kevrekidis
,
P. G.
, and
Yang
,
J.
,
2016
, “
Formation of Rarefaction Waves in Origami-Based Metamaterials
,”
Phys. Rev. E
,
93
(
4
), pp.
1
11
.10.1103/PhysRevE.93.043004
28.
Liu
,
S.
,
Lu
,
G.
,
Chen
,
Y.
, and
Leong
,
Y. W.
,
2015
, “
Deformation of the Miura-Ori Patterned Sheet
,”
Int. J. Mech. Sci.
,
99
, pp.
130
142
.10.1016/j.ijmecsci.2015.05.009
29.
Fathers
,
R. K.
,
Gattas
,
J. M.
, and
You
,
Z.
,
2015
, “
Quasi-Static Crushing of Eggbox, Cube, and Modified Cube Foldcore Sandwich Structures
,”
Int. J. Mech. Sci.
,
101–102
, pp.
421
428
.10.1016/j.ijmecsci.2015.08.013
30.
Gattas
,
J. M.
, and
You
,
Z.
,
2014
, “
Quasi-Static Impact of Indented Foldcores
,”
Int. J. Impact Eng.
,
73
, pp.
15
29
.10.1016/j.ijimpeng.2014.06.001
31.
Fang
,
H.
,
Li
,
S.
,
Ji
,
H.
, and
Wang
,
K. W.
,
2017
, “
Dynamics of a Bistable Miura-Origami Structure
,”
Phys. Rev. E
,
95
(
5
), pp.
27
29
.10.1103/PhysRevE.95.052211
32.
Ishida
,
S.
,
Uchida
,
H.
,
Shimosaka
,
H.
, and
Hagiwara
,
I.
,
2017
, “
Design and Numerical Analysis of Vibration Isolators With Quasi-Zero-Stiffness Characteristics Using Bistable Foldable Structures
,”
ASME J. Vib. Acoust. Trans. ASME
,
139
(
3
), p.
031015
.10.1115/1.4036096
33.
Ishida
,
S.
,
Suzuki
,
K.
, and
Shimosaka
,
H.
,
2017
, “
Design and Experimental Analysis of Origami-Inspired Vibration Isolator With Quasi-Zero-Stiffness Characteristic
,”
ASME J. Vib. Acoust
,
139
(
5
), p.
051004
.10.1115/1.4036465
34.
Sadeghi
,
S.
, and
Li
,
S.
,
2019
, “
Fluidic Origami Cellular Structure With Asymmetric Quasi-Zero Stiffness for Low-Frequency Vibration Isolation
,”
Smart Mater. Struct.
,
28
(
6
), p.
065006
.10.1088/1361-665X/ab143c
35.
Bhuiyan
,
H.
, and
Emran
,
M.
,
2017
, “
Dynamic Modeling and Analysis of Strain Energy Deployment of an Origami Flasher
,”
Electronic thesis or dissertation
,
University of Toledo
, OhioLINK Electronic Theses and Dissertations Center.http://rave.ohiolink.edu/etdc/view?acc_num=toledo1501870672129919
36.
Kidambi
,
N.
, and
Wang
,
K. W.
,
2020
, “
Dynamics of Kresling Origami Deployment
,”
Phys. Rev. E
,
101
(
6
), p.
63003
.10.1103/PhysRevE.101.063003
37.
Wu
,
H.
,
Fang
,
H.
,
Chen
,
L.
, and
Xu
,
J.
,
2020
, “
Transient Dynamics of a Miura-Origami Tube During Free Deployment
,”
Phys. Rev. Appl.
,
14
(
3
), p.
034068
.10.1103/PhysRevApplied.14.034068
38.
Miura
,
K.
,
2009
, “
The Science of Miura-Ori
,”
Origami
,
4
, pp.
87
99
.
39.
Li
,
M.
,
Shen
,
L.
,
Jing
,
L.
,
Xu
,
S.
,
Zheng
,
B.
,
Lin
,
X.
,
Yang
,
Y.
,
Wang
,
Z.
, and
Chen
,
H.
,
2019
, “
Origami Metawall: Mechanically Controlled Absorption and Deflection of Light
,”
Adv. Sci.
,
6
(
23
), p.
1901434
.10.1002/advs.201901434
40.
Gattas
,
J. M.
, and
You
,
Z.
,
2014
, “
Miura-Base Rigid Origami: Parametrizations of Curved-Crease Geometries
,”
ASME J. Mech. Des.
,
136
(
12
), pp.
1
10
.10.1115/1.4028532
41.
Wu
,
S. R.
,
Chen
,
T. H.
, and
Tsai
,
H. Y.
,
2019
, “
A Review of Actuation Force in Origami Applications
,”
J. Mech.
,
35
(
5
), pp.
627
639
.10.1017/jmech.2019.21
42.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
, and
Lagoudas
,
D. C.
,
2019
,
Active Origami
.10.1007/978-3-319-91866-2
43.
Peraza-Hernandez
,
E. A.
,
Hartl
,
D. J.
,
Malak
,
R. J.
, and
Lagoudas
,
D. C.
,
2014
, “
Origami-Inspired Active Structures: A Synthesis and Review
,”
Smart Mater. Struct.
,
23
(
9
), p.
094001
.10.1088/0964-1726/23/9/094001
44.
Martinez
,
R. V.
,
Fish
,
C. R.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2012
, “
Elastomeric Origami: Programmable Paper-Elastomer Composites as Pneumatic Actuators
,”
Adv. Funct. Mater.
,
22
(
7
), pp.
1376
1384
.10.1002/adfm.201102978
45.
Zirbel
,
S.
,
Trease
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2014
, “
Deployment Methods for an Origami-Inspired Rigid-Foldable Array
,” Proceedings of the 40th Aerospace Mechanisms Symposium
NASA Godda
, Baltimore, MD, pp.
189
194
.
46.
Liu
,
K.
, and
Paulino
,
G. H.
, “
MERLIN: A MATLAB Implementation to Capture Highly Nonlinear Behavior of Non-Rigid Origami
,”
Proceedings of IASS Annual Symposia, IASS 2016 Tokyo Symposium: Spatial Structures in the 21st Century, Origami
, Tokyo, Japan, pp.
1
10
.
47.
Liu
,
K.
, and
Paulino
,
G. H.
,
2018
, “
Highly Efficient Nonlinear Structural Analysis of Origami Assemblages Using the MERLIN2 Software
,” Merlin2, Origami, 7(4), pp.
1167
1182
.
48.
Filipov
,
E. T.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids Struct.
,
124
, pp.
26
45
.10.1016/j.ijsolstr.2017.05.028
49.
Liu
,
K.
, and
Paulino
,
G. H.
,
2017
, “
Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach†
,”
Proc. R. Soc. A.
,
473
(
2206
), p.
20170348
.10.1098/rspa.2017.0348
50.
Filipov
,
E. T.
,
Paulino
,
G. H.
, and
Tachi
,
T.
,
2016
, “
Origami Tubes With Reconfigurable Polygonal Cross-Sections
,”
Proc. R. Soc. A
,
472
(
2185
), p.
20150607
.10.1098/rspa.2015.0607
You do not currently have access to this content.