Abstract

In this study, model order reduction of high-fidelity off-road mobility models is explored to address the computational intensity of nonlinear finite element deformable tire–soil interaction models. To this end, a model order reduction procedure for the tire–soil interaction model is developed with the proper orthogonal decomposition (POD), and it is integrated into the off-road mobility simulation framework, leveraging high-performance computing. The POD is, however, limited in that the modes are dependent on snapshot data collected during the running of a full order model, limiting the modes to being accurate only for the specific scenario from which they were collected. Due to this limitation, a method of mode adaptation through interpolation on a tangent space of the Grassmann manifold is investigated to allow modes to be predicted for cases in which a full order model has not been run. It is demonstrated by several numerical examples that the POD modes are effective at retaining predictive accuracy while reducing computational time. The results show that adapted POD modes are more capable of characterizing the behavior of the model than modes produced at a different value of the simulation parameter. The POD-based reduced order modeling approach is further extended to the full vehicle simulation on deformable terrain through the co-simulation coupling algorithm by leveraging the high-performance computing technique.

References

1.
Bekker
,
M. G.
,
1956
,
Theory of Land Locomotion
,
University of Michigan Press
, Ann Arbor, MI.
2.
Wong
,
J. Y.
,
2008
,
Theory of Ground Vehicles
,
Wiley
, Hoboken, NJ.
3.
Krenn
,
R.
, and
Gibbesch
,
A.
,
2011
, “
Soft Soil Contact Modeling Technique for Multi-Body System Simulation
,”
Trends in Computational Contact Mechanics
,
Springer
,
Berlin, Heidelberg
, pp.
135
155
.
4.
Shoop
,
S. A.
,
2001
,
Finite Element Modeling of Tire-Terrain Interaction (No. ERDC/CRREL-TR-01-16)
,
Engineering Research and Development Center, Cold Regions Research and Engineering Lab.
,
Hanover NH
.
5.
Yamashita
,
H.
,
Jayakumar
,
P.
,
Alsaleh
,
M.
, and
Sugiyama
,
H.
,
2018
, “
Physics-Based Deformable Tire–Soil Interaction Model for Off-Road Mobility Simulation and Experimental Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021002
.10.1115/1.4037994
6.
Smith
,
W.
, and
Peng
,
H.
,
2013
, “
Modeling of Wheel–Soil Interaction Over Rough Terrain Using the Discrete Element Method
,”
J. Terramech.
,
50
(
5–6
), pp.
277
287
.10.1016/j.jterra.2013.09.002
7.
Recuero
,
A.
,
Serban
,
R.
,
Peterson
,
B.
,
Sugiyama
,
H.
,
Jayakumar
,
P.
, and
Negrut
,
D.
,
2017
, “
A High-Fidelity Approach for Vehicle Mobility Simulation: Nonlinear Finite Element Tires Operating on Granular Material
,”
J. Terramech.
,
72
, pp.
39
54
.10.1016/j.jterra.2017.04.002
8.
Wasfy
,
T. M.
,
Jayakumar
,
P.
,
Mechergui
,
D.
, and
Sanikommu
,
S.
,
2018
, “
Prediction of Vehicle Mobility on Large-Scale Soft-Soil Terrain Maps Using Physics-Based Simulation
,”
Int. J. Veh. Perform.
,
4
(
4
), pp.
347
381
.10.1504/IJVP.2018.095753
9.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When, and How
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041007
.10.1115/1.4027313
10.
Corona
,
E.
,
Gorsich
,
D.
,
Jayakumar
,
P.
, and
Veerapaneni
,
S.
,
2019
, “
Tensor Train Accelerated Solvers for Nonsmooth Rigid Body Dynamics
,”
ASME Appl. Mech. Rev.
,
71
(
5
), p. 050804. 10.1115/1.4043324
11.
Yamashita
,
H.
,
Chen
,
G.
,
Ruan
,
Y.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2019
, “
Hierarchical Multiscale Modeling of Tire–Soil Interaction for Off-Road Mobility Simulation
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
6
), p.
061007
.10.1115/1.4042510
12.
Yamashita
,
H.
,
Chen
,
G.
,
Ruan
,
Y.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2020
, “
Parallelized Multiscale Off-Road Vehicle Mobility Simulation Algorithm and Full-Scale Vehicle Validation
,”
ASME J. Comput. Nonlinear Dyn.
,
15
(
9
), p.
091007
.10.1115/1.4046666
13.
Chen
,
G.
,
Yamashita
,
H.
,
Ruan
,
Y.
,
Jayakumar
,
P.
,
Knap
,
J.
,
Leiter
,
K. W.
,
Yang
,
X.
, and
Sugiyama
,
H.
,
2021
, “
Enhancing Hierarchical Multiscale Off-Road Mobility Model by Neural Network Surrogate Model
,”
ASME J. Comput. Nonlinear Dyn.
,
16
(
8
), p.
081005
.10.1115/1.4051271
14.
Schilders
,
W.
,
2008
, “
Introduction to Model Order Reduction
,”
Model Order Reduction: Theory, Research Aspects and Applications
,
Springer
,
Berlin, Heidelberg, Germany
, pp.
3
32
.
15.
Lassila
,
T.
,
Manzoni
,
A.
,
Quarteroni
,
A.
, and
Rozza
,
G.
,
2014
, “
Model Order Reduction in Fluid Dynamics: Challenges and Perspectives
,”
Reduced Order Methods for Modeling and Computational Reduction
,
Springer
,
Cham, Switzerland
, pp.
235
273
.
16.
Berkooz
,
G.
,
Holmes
,
P.
, and
Lumley
,
J. L.
,
1993
, “
The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows
,”
Annu. Review Fluid Mech.
,
25
(
1
), pp.
539
575
.10.1146/annurev.fl.25.010193.002543
17.
Moehlis
,
J.
,
Smith
,
T. R.
,
Holmes
,
P.
, and
Faisst
,
H.
,
2002
, “
Models for Turbulent Plane Couette Flow Using the Proper Orthogonal Decomposition
,”
Phys. Fluids
,
14
(
7
), pp.
2493
2507
.10.1063/1.1483300
18.
Stabile
,
G.
,
Hijazi
,
S.
,
Mola
,
A.
,
Lorenzi
,
S.
, and
Rozza
,
G.
,
2017
, “
POD-Galerkin Reduced Order Methods for CFD Using Finite Volume Discretisation: Vortex Shedding Around a Circular Cylinder
,”
Commun. Appl. Ind. Math.
,
8
(
1
), pp.
210
236
.10.1515/caim-2017-0011
19.
LeGresley
,
P.
, and
Alonso
,
J.
,
2001
, “
Investigation of Non-Linear Projection for POD Based Reduced Order Models for Aerodynamics
,”
39th Aerospace Sciences Meeting and Exhibit
, Reno, NV, Apr., p.
926
.
20.
Weickum
,
G.
,
Eldred
,
M. S.
, and
Maute
,
K.
,
2009
, “
A Multi-Point Reduced-Order Modeling Approach of Transient Structural Dynamics With Application to Robust Design Optimization
,”
Struct. Multidiscip. Optim.
,
38
(
6
), pp.
599
611
.10.1007/s00158-008-0309-5
21.
Hesthaven
,
J. S.
, and
Ubbiali
,
S.
,
2018
, “
Non-Intrusive Reduced Order Modeling of Nonlinear Problems Using Neural Networks
,”
J. Comput. Phys.
,
363
, pp.
55
78
.10.1016/j.jcp.2018.02.037
22.
Behzad
,
F.
,
Helenbrook
,
B. T.
, and
Ahmadi
,
G.
,
2018
, “
Multilevel Algorithm for Obtaining the Proper Orthogonal Decomposition
,”
AIAA J.
,
56
(
11
), pp.
4423
4436
.10.2514/1.J056807
23.
Amsallem
,
D.
, and
Farhat
,
C.
,
2008
, “
Interpolation Method for Adapting Reduced-Order Models and Application to Aeroelasticity
,”
AIAA J.
,
46
(
7
), pp.
1803
1813
.10.2514/1.35374
24.
Kerschen
,
G.
,
Golinval
,
J. C.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2005
, “
The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
147
169
.10.1007/s11071-005-2803-2
25.
Lu
,
Y.
,
Blal
,
N.
, and
Gravouil
,
A.
,
2018
, “
Space–Time POD Based Computational Vademecums for Parametric Studies: Application to Thermo-Mechanical Problems
,”
Adv. Model. Simul. Eng. Sci.
,
5
(
1
), p.
3
.10.1186/s40323-018-0095-6
26.
Yamashita
,
H.
,
Jayakumar
,
P.
, and
Sugiyama
,
H.
,
2016
, “
Physics-Based Flexible Tire Model Integrated With LuGre Tire Friction for Transient Braking and Cornering Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031017
.10.1115/1.4032855
27.
de Souza Neto
,
E. A.
,
Peric
,
D.
, and
Owen
,
D. R.
,
2011
,
Computational Methods for Plasticity: Theory and Applications
,
Wiley
, Hoboken, NJ.
28.
Jay
,
L. O.
,
Merwine
,
B. C.
,
Sugiyama
,
H.
, and
Yamashita
,
H.
,
2020
, “
A Two-Stage Extension of the Generalized-α Method for Constrained Systems in Mechanics
,”
ASME
Paper No. DETC2020-22385.10.1115/DETC2020-22385
29.
Luo
,
K.
,
Hu
,
H.
,
Liu
,
C.
, and
Tian
,
Q.
,
2017
, “
Model Order Reduction for Dynamic Simulation of a Flexible Multibody System Via Absolute Nodal Coordinate Formulation
,”
Comput. Methods Appl. Mech. Eng.
,
324
, pp.
573
594
.10.1016/j.cma.2017.06.029
You do not currently have access to this content.