Abstract

In this paper, a nonlinear energy sink (NES) is designed and applied for the suppression of the friction-induced vibration (FIV) of a braking system. The equation of motion of the braking system, as well as the NES, is established by using the Lagrange equation. The nonlinear restoring force of the NES is realized by vertically paralleling two linear springs. The friction force between the wheel and the braking block is calculated by the Coulomb–Stribeck friction model. The variation of the wheel speed with the friction force is derived by the kinetic energy theorem. From the simulation, two-stage FIV systems are observed. The wheel speed decreases monotonically in the first stage and oscillates around 0 m/s in the second stage. The effects of the contact pressure and stiffness coefficient of the block on the FIV system are analyzed. By series connecting the NES to the braking block, the amplitude of FIV braking system can be reduced significantly in the first stage. Furthermore, the effects of the mass ratio between the block and the NES, and the damping coefficient of the NES on the FIV braking system are also discussed. This research can be helpful for the vibration suppression design of the braking system in vehicles.

References

1.
Awrejcewicz
,
J.
, and
Pyryev
,
Y.
,
2006
, “
Dynamics of a Two-Degrees-of-Freedom System With Friction and Heat Generation
,”
Commun. Nonlinear Sci. Numer. Simul.
,
11
(
5
), pp.
635
645
.10.1016/j.cnsns.2005.01.008
2.
Wikieł
,
B.
, and
Hill
,
J. M.
,
2000
, “
Stick-Slip Motion for Two Coupled Masses With Side Friction
,”
Int. J. Non-Linear Mech.
,
35
(
6
), pp.
953
962
.10.1016/S0020-7462(99)00069-4
3.
Xiang
,
Z. Y.
,
Mo
,
J. L.
,
Ouyang
,
H.
,
Massi
,
F.
,
Tang
,
B.
, and
Zhou
,
Z. R.
,
2020
, “
Contact Behaviour and Vibrational Response of a High-Speed Train Brake Friction Block
,”
Tribol. Int.
,
152
, p.
106540
.10.1016/j.triboint.2020.106540
4.
Pilipchuk
,
V.
,
Olejnik
,
P.
, and
Awrejcewicz
,
J.
,
2015
, “
Transient Friction-Induced Vibrations in a 2-DOF Model of Brakes
,”
J. Sound Vib.
,
344
, pp.
297
312
.10.1016/j.jsv.2015.01.028
5.
Liu
,
N.
, and
Ouyang
,
H.
,
2020
, “
Suppression of Friction-Induced-Vibration in MDoF Systems Using Tangential Harmonic Excitation
,”
Meccanica
,
55
(
7
), pp.
1525
1542
.10.1007/s11012-020-01172-8
6.
Liu
,
N.
, and
Ouyang
,
H.
,
2020
, “
Friction-Induced Vibration Considering Multiple Types of Nonlinearities
,”
Nonlinear Dyn.
,
102
(
4
), pp.
2057
2075
.10.1007/s11071-020-06055-x
7.
Sui
,
X.
, and
Ding
,
Q.
,
2018
, “
Bifurcation and Stability Analyses for a Pad-On-Disc Frictional System
,”
Int. J. Non-Linear Mech.
,
107
, pp.
112
125
.10.1016/j.ijnonlinmec.2018.09.002
8.
Ghorbel
,
A.
,
Zghal
,
B.
,
Abdennadher
,
M.
,
Walha
,
L.
, and
Haddar
,
M.
,
2019
, “
A New Approach Considering the Brake Pad Geometry in Brake Squeal
,”
Arch. Appl. Mech.
,
89
(
10
), pp.
2075
2088
.10.1007/s00419-019-01563-8
9.
Stender
,
M.
,
Di Bartolomeo
,
M.
,
Massi
,
F.
, and
Hoffmann
,
N.
,
2019
, “
Revealing Transitions in Friction-Excited Vibrations by Nonlinear Time-Series Analysis
,”
Nonlinear Dyn.
,
98
(
4
), pp.
2613
2630
.10.1007/s11071-019-04987-7
10.
Xing
,
P.
,
Li
,
G.
,
Gao
,
H.
, and
Wang
,
G.
,
2020
, “
Experimental Investigation on Identifying Friction State in Lubricated Tribosystem Based on Friction-Induced Vibration Signals
,”
Mech. Syst. Signal Process.
,
138
, p.
106590
.10.1016/j.ymssp.2019.106590
11.
Wang
,
X. C.
,
Huang
,
B.
,
Wang
,
R. L.
,
Mo
,
J. L.
, and
Ouyang
,
H.
,
2020
, “
Friction-Induced Stick-Slip Vibration and Its Experimental Validation
,”
Mech. Syst. Signal Process.
,
142
, p.
106705
.10.1016/j.ymssp.2020.106705
12.
Li
,
Z.
,
Wang
,
X.
,
Zhang
,
Q.
,
Guan
,
Z.
,
Mo
,
J.
, and
Ouyang
,
H.
,
2018
, “
Model Reduction for Friction-Induced Vibration of Multi-Degree-of-Freedom Systems and Experimental Validation
,”
Int. J. Mech. Sci.
,
145
, pp.
106
119
.10.1016/j.ijmecsci.2018.06.039
13.
Niknam
,
A.
, and
Farhang
,
K.
,
2019
, “
Friction-Induced Vibration in a Two-Mass Damped System
,”
J. Sound Vib.
,
456
, pp.
454
475
.10.1016/j.jsv.2019.05.032
14.
Saha
,
A.
, and
Wahi
,
P.
,
2014
, “
An Analytical Study of Time-Delayed Control of Friction-Induced Vibrations in a System With a Dynamic Friction Model
,”
Int. J. Non-Linear Mech.
,
63
, pp.
60
70
.10.1016/j.ijnonlinmec.2014.03.012
15.
Li
,
Z.
,
Ouyang
,
H.
, and
Guan
,
Z.
,
2017
, “
Friction-Induced Vibration of an Elastic Disc and a Moving Slider With Separation and Reattachment
,”
Nonlinear Dyn.
,
87
(
2
), pp.
1045
1067
.10.1007/s11071-016-3097-2
16.
Zhou
,
D. F.
,
Hansen
,
C. H.
, and
Li
,
J.
,
2011
, “
Suppression of Maglev Vehicle-Girder Self-Excited Vibration Using a Virtual Tuned Mass Damper
,”
J. Sound Vib.
,
330
(
5
), pp.
883
901
.10.1016/j.jsv.2010.09.018
17.
Chatterjee
,
S.
,
2007
, “
Non-Linear Control of Friction-Induced Self-Excited Vibration
,”
Int. J. Non-Linear Mech.
,
42
(
3
), pp.
459
469
.10.1016/j.ijnonlinmec.2007.01.015
18.
Li
,
Z.
,
Cao
,
Q.
, and
Nie
,
Z.
,
2020
, “
Stick-Slip Vibrations of a Self-Excited SD Oscillator With Coulomb Friction
,”
Nonlinear Dyn.
,
102
(
3
), pp.
1419
1435
.10.1007/s11071-020-06009-3
19.
Vakakis
,
A. F.
, and
Gendelman
,
O.
,
2001
, “
Energy Pumping in Nonlinear Mechanical Oscillators: Part II—Resonance Capture
,”
J. Appl. Mech.
,
68
(
1
), pp.
42
48
.10.1115/1.1345525
20.
Geng
,
X. F.
,
Ding
,
H.
,
Mao
,
X. Y.
, and
Chen
,
L. Q.
,
2021
, “
Nonlinear Energy Sink With Limited Vibration Amplitude
,”
Mech. Syst. Signal Process.
,
156
, p.
107625
.10.1016/j.ymssp.2021.107625
21.
Yang
,
T.
,
Hou
,
S.
,
Qin
,
Z. H.
,
Ding
,
Q.
, and
Chen
,
L. Q.
,
2021
, “
A Dynamic Reconfigurable Nonlinear Energy Sink
,”
J. Sound Vib.
,
494
, p.
115629
.10.1016/j.jsv.2020.115629
22.
Zhang
,
Z.
,
Lu
,
Z. Q.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2019
, “
An Inertial Nonlinear Energy Sink
,”
J. Sound Vib.
,
450
, pp.
199
213
.10.1016/j.jsv.2019.03.014
23.
Javidialesaadi
,
A.
, and
Wierschem
,
N. E.
,
2019
, “
An Inerter-Enhanced Nonlinear Energy Sink
,”
Mech. Syst. Signal Process.
,
129
, pp.
449
454
.10.1016/j.ymssp.2019.04.047
24.
Cao
,
Y.
,
Yao
,
H.
,
Li
,
Q.
,
Yang
,
P.
, and
Wen
,
B.
,
2020
, “
Vibration Mitigation and Dynamics of a Rotor-Blade System With an Attached Nonlinear Energy Sink
,”
Int. J. Non-Linear Mech.
,
127
, p.
103614
.10.1016/j.ijnonlinmec.2020.103614
25.
Zhou
,
J.
,
Xu
,
M.
,
Zha
,
J.
, and
Yang
,
Z.
,
2021
, “
The Suppression of Nonlinear Panel Flutter Response at Elevated Temperatures Using a Nonlinear Energy Sink
,”
Meccanica
,
56
(
1
), pp.
41
57
.10.1007/s11012-020-01269-0
26.
Zhang
,
Y.
,
Lu
,
Y.
, and
Chen
,
L.
,
2019
, “
Energy Harvesting Via Nonlinear Energy Sink for Whole-Spacecraft
,”
Sci. China Technol. Sci.
,
62
(
9
), pp.
1483
1491
.10.1007/s11431-018-9468-8
27.
Zhang
,
Y.
,
Xu
,
K.
,
Zang
,
J.
,
Ni
,
Z.
,
Zhu
,
Y.
, and
Chen
,
L.
,
2019
, “
Dynamic Design of a Nonlinear Energy Sink With NiTiNOL-Steel Wire Ropes Based on Nonlinear Output Frequency Response Functions
,”
Appl. Math. Mech.
,
40
(
12
), pp.
1791
1804
.10.1007/s10483-019-2548-9
28.
Xue
,
J.
,
Zhang
,
Y.
,
Ding
,
H.
, and
Chen
,
L.
,
2020
, “
Vibration Reduction Evaluation of a Linear System With a Nonlinear Energy Sink Under a Harmonic and Random Excitation
,”
Appl. Math. Mech.
,
41
(
1
), pp.
1
14
.10.1007/s10483-020-2560-6
29.
Kani
,
M.
,
Khadem
,
S. E.
,
Pashaei
,
M. H.
, and
Dardel
,
M.
,
2016
, “
Vibration Control of a Nonlinear Beam With a Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
1
22
.10.1007/s11071-015-2304-x
30.
Liu
,
Y.
,
Chen
,
G.
, and
Tan
,
X.
,
2020
, “
Dynamic Analysis of the Nonlinear Energy Sink With Local and Global Potentials: Geometrically Nonlinear Damping
,”
Nonlinear Dyn.
,
101
(
4
), pp.
2157
2180
.10.1007/s11071-020-05876-0
31.
Zhou
,
K.
,
Xiong
,
F. R.
,
Jiang
,
N. B.
,
Dai
,
H. L.
,
Yan
,
H.
,
Wang
,
L.
, and
Ni
,
Q.
,
2019
, “
Nonlinear Vibration Control of a Cantilevered Fluid-Conveying Pipe Using the Idea of Nonlinear Energy Sink
,”
Nonlinear Dyn.
,
95
(
2
), pp.
1435
1456
.10.1007/s11071-018-4637-8
32.
Lee
,
C. H.
,
2008
, “
Development of a Semi-Empirical Friction Model in Automotive Driveshaft Joints
,”
Int. J. Automot. Technol.
,
9
(
3
), pp.
317
322
.10.1007/s12239-008-0038-1
You do not currently have access to this content.