Abstract

This work proposes an examination into the static and dynamic behaviors of in-plane V-shaped microbeam under both electric forces and axial loads. The microbeams are actuated with two separate electrodes of uniform air gap across their length. The effects of the initial rise and DC bias voltage are examined while varying the axial loads ranging from compressive to tensile. The numerical analysis is based on a nonlinear equation of motion of a shallow V-shaped microbeam. The static and eigenvalue problem were solved using a modal expansion based reduced-order modeling for numerous equilibrium positions. The analytical model is validated by comparing to an experimental case study. The results show rich and diverse static and dynamic behavior. It is shown that the microbeam may exhibit only the pull-in or snap-through and pull-in instabilities. Various multistate and hysterics behaviors are demonstrated when varying the actuation forces and the initial rise. High tunability is demonstrated when varying the axial and DC loads for the first two symmetric vibration modes. With various axial load and DC actuation options and different geometrical configurations, this particular V-shaped microbeam shows a capacity of increasing the static deflection range before pull-in, allowing more variation of its fundamental natural frequency. Therefore, it could be more promising for the realization of different wide-range tunable microresonator as compared to the regular straight and even bell-shaped microbeams. These results are very useful in microscale applications that can be benefit for designing some structures with low power consumption, high sensitivity, and wide tuning range. Such rich behavior can be very useful for high-performance microscale applications designs.

References

1.
Alcheikh
,
N.
,
Ben. Mbarek
,
S.
,
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2021
, “
A Highly Sensitive and Wide-Range Resonant Magnetic Micro-Sensor Based on a Buckled Micro-Beam
,”
Sens. Actuators, A
,
328
, p.
112768
.10.1016/j.sna.2021.112768
2.
Hasan
,
M. H.
,
Alsaleem
,
F. M.
, and
Ouakad
,
H. M.
,
2018
, “
Novel Threshold Pressure Sensors Based on Nonlinear Dynamics of MEMS Resonators
,”
J. Micromech. Microeng.
,
28
(
6
), p.
065007
.10.1088/1361-6439/aab515
3.
Zamanzadeh
,
M.
,
Jafarsadeghi-Pournaki
,
I.
, and
Ouakad
,
H. M.
,
2020
, “
A Resonant Pressure MEMS Sensor Based on Levitation Force Excitation Detection
,”
Nonlinear Dyn.
,
100
(
2
), pp.
1105
1123
.10.1007/s11071-020-05579-6
4.
Yang
,
S.
, and
Xu
,
Q.
,
2017
, “
A Review on Actuation and Sensing Techniques for MEMS-Based Microgrippers
,”
J. Micro-Bio Rob.
,
13
(
1–4
), pp.
1
4
.10.1007/s12213-017-0098-2
5.
Pimpin
,
A.
,
Charoenbunyarit
,
I.
, and
Srituravanich
,
W.
,
2017
, “
Material and Performance Characterization of Z-Shaped Nickel Electrothermal Micro-Actuators
,”
Sens. Actuators, A
,
253
, pp.
49
58
.10.1016/j.sna.2016.11.022
6.
Jia
,
X. L.
,
Yang
,
J.
,
Kitipornchai
,
S.
, and
Lim
,
C. W.
,
2012
, “
Pull-in Instability and Free Vibration of Electrically Actuated Poly-SiGe Graded Micro-Beams With a Curved Ground Electrode
,”
Appl. Math. Modell.
,
36
(
5
), pp.
1875
84
.10.1016/j.apm.2011.07.080
7.
Derakhshani
,
M.
, and
Berfield
,
T. A.
,
2019
, “
Snap-Through and Mechanical Strain Analysis of a MEMS Bistable Vibration Energy Harvester
,”
Shock Vib.
,
2019
, pp.
1
10
.10.1155/2019/6743676
8.
Rebeiz
,
G. M.
,
2004
,
RF MEMS: Theory, Design, and Technology
,
Wiley
, NJ.
9.
Zhang
,
Z.
,
Zhang
,
W.
,
Wu
,
Q.
,
Yu
,
Y.
,
Liu
,
X.
, and
Zhang
,
X.
,
2017
, “
Closed-Form Modelling and Design Analysis of V-and Z-Shaped Electrothermal Microactuators
,”
J. Micromech. Microeng.
,
27
(
1
), p.
015023
.10.1088/1361-6439/27/1/015023
10.
Guan
,
C.
, and
Zhu
,
Y.
,
2010
, “
An Electrothermal Microactuator With Z-Shaped Beams
,”
J. Micromech. Microeng.
,
20
(
8
), p.
085014
.10.1088/0960-1317/20/8/085014
11.
Zand
,
M. M.
,
2012
, “
The Dynamic Pull-in Instability and Snap-Through Behavior of Initially Curved Microbeams
,”
Mech. Adv. Mater. Struct.
,
19
(
6
), pp.
485
491
.10.1080/15376494.2011.556836
12.
Tajalli
,
S. A.
, and
Tajalli
,
S. M.
,
2019
, “
Wavelet Based Damage Identification and Dynamic Pull-in Instability Analysis of Electrostatically Actuated Coupled Domain Microsystems Using Generalized Differential Quadrature Method
,”
Mech. Syst. Signal Process.
,
133
, p.
106256
.10.1016/j.ymssp.2019.106256
13.
Pane
,
I. Z.
, and
Asano
,
T.
,
2008
, “
Investigation on Bistability and Fabrication of Bistable Prestressed Curved Beam
,”
Jpn. J. Appl. Phys.
,
47
(
6
), pp.
5291
5296
.10.1143/JJAP.47.5291
14.
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2014
, “
On Using the Dynamic Snap-Through Motion of MEMS Initially Curved Microbeams for Filtering Applications
,”
J. Sound Vib.
,
333
(
2
), pp.
555
568
.10.1016/j.jsv.2013.09.024
15.
Alcheikh
,
N.
,
Ouakad
,
H. M.
,
Mbarek
,
S. B.
, and
Younis
,
M. I.
,
2021
, “
Static and Dynamic Actuations of Clamped-Clamped V-Shaped Micro-Resonators Under Electrostatic Forces
,”
Mech. Syst. Signal Process.
,
155
, p.
107571
.10.1016/j.ymssp.2020.107571
16.
Alcheikh
,
N.
,
Ouakad
,
H. M.
, and
Younis
,
M. I.
,
2020
, “
Dynamics of V-Shaped Electrothermal MEMS-Based Resonators
,”
J. Microelectromech. Syst.
,
29
(
5
), pp.
1372
1381
.10.1109/JMEMS.2020.3018193
17.
Zamanzadeh
,
M.
,
Ouakad
,
H. M.
, and
Azizi
,
S.
,
2020
, “
Theoretical and Experimental Investigations of the Primary and Parametric Resonances in Repulsive Force Based MEMS Actuators
,”
Sens. Actuators, A
,
303
, p.
111635
.10.1016/j.sna.2019.111635
18.
Hassena
,
M. A. B.
, Samaali, H., Ouakad, H. M., and Najar, F.,
2021
, “
2D Electrostatic Energy Harvesting Device Using a Single Shallow Arched Microbeam
,”
Int. J. Non-Linear Mech.
,
132
, p.
103700
. 10.1016/j.ijnonlinmec.2021.103700
19.
Song
,
K.
,
Lee
,
H.
, and
Cha
,
Y. A.
,
2018
, “
V-Shaped Actuator Utilizing Electrostatic Force
,”
Actuators
,
7
(
2
), p.
30
.10.3390/act7020030
20.
Goll
,
C.
,
Bacher
,
W.
,
Büstgens
,
B.
,
Maas
,
D.
,
Menz
,
W.
, and
Schomburg
,
W. K.
,
1996
, “
Microvalves With Bistable Buckled Polymer Diaphragms
,”
J. Micromech. Microeng.
,
6
(
1
), pp.
77
79
.10.1088/0960-1317/6/1/017
21.
Hafiz
,
M. A.
,
Kosuru
,
L.
,
Ramini
,
A.
,
Chappanda
,
K. N.
, and
Younis
,
M. I.
,
2016
, “
In-Plane MEMS Shallow Arch Beam for Mechanical Memory
,”
Micromachines
,
7
(
10
), p.
191
.10.3390/mi7100191
22.
Alkharabsheh
,
S. A.
, and
Younis
,
M. I.
,
2013
, “
Statics and Dynamics of MEMS Arches Under Axial Forces
,”
ASME J. Vib. Acoust.
,
135
(
2
), p.
021007
.10.1115/1.4023055
23.
Li
,
L.
, and
Chew
,
Z. J.
,
2018
, “
Microactuators: Design and Technology
,”
Smart Sensors and MEMS
,
Woodhead Publishing
, Sawston, UK, pp.
313
354
.10.1016/B978-0-08-102055-5.00012-7
24.
Alcheikh
,
N.
,
Tella
,
S. A.
, and
Younis
,
M. I.
,
2018
, “
Adjustable Static and Dynamic Actuation of Clamped-Guided Beams Using Electrothermal Axial Loads
,”
Sens. Actuators, A
,
273
, pp.
19
29
.10.1016/j.sna.2018.01.066
25.
Luo, S., Li, S., Yang, G., Ouakad, H. M., and Karami, F., 2020. Dynamical Analysis and Anti-Oscillation-Based Adaptive Control of the FO Arch MEMS With Optimality.
Nonlinear Dynam.
, 101(1), pp. 293–309.10.1007/s11071-020-05752-x
26.
Shen
,
X.
, and
Chen
,
X.
,
2013
, “
Mechanical Performance of a Cascaded V-Shaped Electrothermal Actuator
,”
Int. J. Adv. Rob. Syst.
,
10
(
11
), p.
379
.10.5772/56786
27.
Enikov
,
E. T.
,
Kedar
,
S. S.
, and
Lazarov
,
K. V.
,
2005
, “
Analytical Model for Analysis and Design of V-Shaped Thermal Microactuators
,”
J. Microelectromech. Syst.
,
14
(
4
), pp.
788
798
.10.1109/JMEMS.2005.845449
28.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.10.1109/JMEMS.2003.818069
29.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
,
Springer
,
New York
.
30.
Alcheikh
,
N.
,
Ramini
,
A.
,
Hafiz
,
M. A.
, and
Younis
,
M. I.
,
2017
, “
Tunable Clamped–Guided Arch Resonators Using Electrostatically Induced Axial Loads
,”
Micromachines
,
8
(
1
), p.
14
.10.3390/mi8010014
You do not currently have access to this content.