Abstract

Forcespinning is a novel method that makes use of centrifugal forces to produce nanofibers rapidly and at high yields. To improve and enhance the forcespinning production method, a 2D computational forcespinning inviscid fluid dynamics model is developed. Two models, namely, time-independent and time-dependent, are obtained in order to investigate the effects of various parameters on fiber forcespinning formation (trajectory, jet diameter, tangential velocity). The fluid dynamics equations are solved using the method of multiple scales along with the finite difference method and including slender-jet theory assumptions. It is important to produce jets with small diameters in the micro- and nanorange. Both the Weber (We) and Rossby (Rb) numbers were found to expand the jet trajectory as they increased. Increasing We and/or decreasing Rb was found to decrease the jet diameter. Also, by varying forcespinning parameters, it has been found that the jet radius can be decreased by increasing the jet exit angle in the direction of rotation, reducing the spinneret fluid level, increasing the angular velocity of the spinneret, reducing spinneret length, and/or reducing the orifice diameter. Knowing that jet trajectories are important for designing and positioning of the fiber collector, it has been found that the trajectories expand out with the increase in the jet exit angle in the direction of rotation, increase in the fluid level, increase in the angular velocity, and/or increase in the spinneret length. Production rates and jet radii for any predetermined radial collector distance were also determined.

References

1.
Duan, Y.-Y.
,
Jia
,
J.
, Wang,
S.-H.
,
Yan ,
W.
,
Jin
,
L.
, and
Wang
,
Z.-Y.
,
2007
, “
Preparation of PLGA Electrospun Nanofibers for Tissue Engineering Applications
,”
J. US-China Med. Sci.
,
4
(
1
), pp.
41
44
.https://www.airitilibrary.com/Publication/alDetailedMesh?docid=15486648-200701-4-1-41-44-a
2.
Kim
,
K.
,
Yu
,
M.
,
Zong
,
X.
,
Chiu
,
J.
,
Fang
,
D.
,
Seo
,
Y.-S.
,
Hsiao
,
B. S.
,
Chu
,
B.
, and
Hadjiargyrou
,
M.
,
2003
, “
Control of Degradation Rate and Hydrophilicity in Electrospun Non-Woven Poly(D, L-Lactide) Nanofiber Scaffolds for Biomedical Applications
,”
Biomaterials
,
24
(
27
), pp.
4977
4985
.10.1016/S0142-9612(03)00407-1
3.
Kowalewski
,
T. A.
,
Barral
,
S.
, and
Kowalczy
,
T.
,
2009
, “
Modeling Electrospinning of Nanofibers
,”
IUTAM Symp. Modell. Nanomaterials Nanosystems (IUTAM Bookseries)
,
13
, pp.
279
292
.10.1007/978-1-4020-9557-3
4.
Lyons
,
J. M.
,
2004
, “
Melt Electrospinning of Thermoplastic polymers - An Experimental and Theoretical Analysis
,” Ph.D. thesis,
Drexel University
, Philadelphia, PA.
5.
Thompson
,
C. J.
,
Chase
,
G. G.
,
Yarin
,
A. L.
, and
Reneker
,
D. H.
,
2007
, “
Effects of Parameters on Nanofiber Diameter Determined From Electrospinning Model
,”
Polymer
,
48
(
23
), pp.
6913
6922
.10.1016/j.polymer.2007.09.017
6.
Xu
,
L.
,
2009
, “
A Mathematical Model for Electrospinning Process Under Coupled Field Forces
,”
Chaos, Solitons Fractals
,
42
(
3
), pp.
1463
1465
.10.1016/j.chaos.2009.03.054
7.
Yarin
,
A. L.
,
Koombhongse
,
S.
, and
Reneker
,
D. H.
,
2001
, “
Taylor Cone and Jetting From Liquid Droplets in Electrospinning of Nanofibers
,”
J. Appl. Phys.
,
90
(
9
), pp.
4836
4846
.10.1063/1.1408260
8.
Nagai
,
Y.
,
Unsworth
,
L.
,
Koutsopoulos
,
S.
, and
Zhang
,
S.
,
2006
, “
Slow Release of Molecules in Self-Assembling Peptide Nanofiber Scaffold
,”
J. Controlled Release
,
115
(
1
), pp.
18
25
.10.1016/j.jconrel.2006.06.031
9.
Rayleigh
,
J. W. S.
,
1878
, “
On the Instability of Jets
,”
Proc. London Math. Soc.
,
s1–10
(
1
), pp.
4
13
.10.1112/plms/s1-10.1.4
10.
Weber
,
C.
,
1931
, “
To the Disintegration of a Liquid Jet (Zum Zerfall Eines Flüssigkeitsstrahles)
,”
Z. Angew. Math. Mech.
,
11
(
2
), pp.
136
141
.10.1002/zamm.19310110207
11.
Eggers
,
J.
,
1997
, “
Nonlinear Dynamics and Breakup of Free-Surface Flows
,”
Rev. Mod. Phys.
,
69
(
3
), pp.
865
929
.10.1103/RevModPhys.69.865
12.
Ozgen
,
S.
, and
Uzol
,
O.
,
2012
, “
Investigation of the Linear Stability Problem of Electrified Jets, Inviscid Analysis
,”
ASME J. Fluids Eng.
,
134
(
9
), p.
0912019
.10.1115/1.4007157
13.
Grafe
,
T.
, and
Graham
,
K.
,
2003
, “
Polymeric Nanofibers and Nanofiber Webs: A New Class of Nonwovens
,”
Int. Nonwovens J.
,
12
(
1
), pp.
51
55
.
14.
Wallwork
,
I. M.
,
Decent
,
S. P.
,
King
,
A. C.
, and
Schulkes
,
R. M. S. M.
,
2002
, “
The Trajectory and Stability of a Spiraling Liquid Jet: Part I—Inviscid Theory
,”
J. Fluid Mech.
,
459
, pp.
43
65
.10.1017/S0022112002008108
15.
Decent
,
S. P.
,
King
,
A. C.
, and
Wallwork
,
I. M.
,
2002
, “
Free Jets Spun From a Prilling Tower
,”
J. Eng. Math
,
42
(
3/4
), pp.
265
282
.10.1023/A:1016127207992
16.
Uddin
,
J.
, and
Decent
,
S. P.
,
2009
, “
Curved Non-Newtonian Liquid Jets With Surfactants
,”
ASME J. Fluids Eng.
,
131
(
9
), p.
091203
.10.1115/1.3203202
17.
Dravid
,
V.
,
Loke
,
P. B.
,
Corvalan
,
C. M.
, and
Sojka
,
P. E.
,
2008
, “
Drop Formation in Non-Newtonian Jets at Low Reynolds Numbers
,”
ASME J. Fluids Eng.
,
130
(
8
), p.
081504
.10.1115/1.2956612
18.
Ahmed
,
M.
,
Abou-Al-Sood
,
M. M.
, and
Ali
,
A. H. H.
,
2011
, “
A One-Dimensional Model of Viscous Liquid Jets Breakup
,”
ASME J. Fluids Eng.
,
133
(
1
), p.
114501
.10.1115/1.4004909
19.
Barhoum
,
A.
,
Pal
,
K.
,
Rahier
,
H.
,
Uludag
,
H.
,
Kim
,
I. S.
, and
Bechelany
,
M.
,
2019
, “
Nanofibers as New-Generation Materials: From Spinning and Nano-Spinning Fabrication Techniques to Emerging Applications
,”
Appl. Mater. Today
,
17
, pp.
1
35
.10.1016/j.apmt.2019.06.015
20.
Carroll
,
C. P.
, and
Joo
,
Y. L.
,
2006
, “
Electrospinning of Viscoelastic Boger Fluids: Modeling and Experiments
,”
Phys. Fluids
,
18
(
5
), p.
053102
.10.1063/1.2200152
21.
Feng
,
J. J.
,
2002
, “
The Stretching of an Electrified Non-Newtonian Jet: A Model for Electrospinning
,”
Phys. Fluids
,
14
(
11
), pp.
3912
3926
.10.1063/1.1510664
22.
Feng
,
J. J.
,
2003
, “
Stretching of a Straight Electrically Charged Viscoelastic Jet
,”
J. Non-Newtonian Fluid Mech.
,
116
(
1
), pp.
55
70
.10.1016/S0377-0257(03)00173-3
23.
Reneker
,
D. H.
,
Yarin
,
A. L.
,
Fong
,
H.
, and
Koombhongse
,
S.
,
2000
, “
Bending Instability of Electrically Charged Liquid Jets of Polymer Solution in Electrospinning
,”
J. Appl. Phys.
,
87
(
9
), pp.
4531
4547
.10.1063/1.373532
24.
Theron
,
S. A.
,
Yarin
,
A. L.
,
Zussman
,
E.
, and
Kroll
,
E.
,
2005
, “
Multiple Jets in Electrospinning: Experiment and Modeling
,”
Polymer
,
46
(
9
), pp.
2889
2899
.10.1016/j.polymer.2005.01.054
25.
Părău
,
E. I.
,
Decent
,
S. P.
,
Simmons
,
M. J. H.
,
Wong
,
D. C. Y.
, and
King
,
A. C.
,
2007
, “
Nonlinear Viscous Liquid Jets From a Rotating Orifice
,”
J. Eng. Math.
,
57
(
2
), pp.
159
179
.10.1007/s10665-006-9118-2
26.
Padron
,
S.
,
Caruntu
,
D. I.
, and
Lozano
,
K.
,
2011
, “
On 2-D Forcespinning Modeling
,”
ASME
Paper No. IMECE2011-64823.10.1115/IMECE2011-64823
27.
Panda
,
S.
,
Marheineke
,
N.
, and
Wegener
,
R.
,
2008
, “
Systematic Derivation of an Asymptotic Model for the Dynamics of Curved Viscous Fibers
,”
Math. Methods Appl. Sci.
,
31
(
10
), pp.
1153
1173
.10.1002/mma.962
28.
Padron
,
S.
, and
Caruntu
,
D. I.
,
2012
, “
Influence of Viscosity on Forcespinning Dynamics
,”
Proceedings of International Mechanical Engineering Congress and Exposition
, Nov. 9–15, Houston, TX, Paper No. IMECE2012-85964.10.1115/IMECE2012-85964
29.
Taghavi
,
S. M.
, and
Larson
,
R. G.
,
2014
, “
Regularized Thin-Fiber Model for Nanofiber Formation by Centrifugal Spinning
,”
Phys. Rev. E
,
89
(
2
), p.
023011
.10.1103/PhysRevE.89.023011
30.
Riahi
,
D.
,
2017
, “
Modeling and Computation of Nonlinear Rotating Polymeric Jets During Forcespinning Process
,”
Int. J. Non-Linear Mech.
,
92
, pp.
1
7
.10.1016/j.ijnonlinmec.2017.03.004
31.
Padron
,
S.
,
Fuentes
,
A. A.
,
Caruntu
,
D. I.
, and
Lozano
,
K.
,
2013
, “
Experimental Study of Nanofiber Production Through Forcespinning
,”
J. Appl. Phys.
,
113
(
2
), p.
024318
.10.1063/1.4769886
32.
Ziabicki
,
K.
,
1976
,
Fundamentals of Fiber Formation
,
Wiley
,
New York
.
33.
Denn
,
M. M.
,
1980
, “
Continuous Drawing of Liquids to Form Fibers
,”
Annu. Rev. Fluid Mech.
,
12
(
1
), pp.
365
387
.10.1146/annurev.fl.12.010180.002053
34.
Denn
,
M. M.
,
2009
, “
Simulation of Polymer Melt Processing
,”
AIChE J.
,
55
(
7
), pp.
1641
1647
.10.1002/aic.11952
35.
Hyun
,
J. C.
,
1978
, “
Theory of Draw Resonance—Part I: Newtonian Fluids
,”
AIChE J.
,
24
(
3
), pp.
418
422
.10.1002/aic.690240305
36.
Pearson
,
J. R. A.
,
1976
, “
Instability in Non-Newtonian Flow
,”
Annu. Rev. Fluid Mech.
,
8
(
1
), pp.
163
181
.10.1146/annurev.fl.08.010176.001115
37.
Petrie
,
C. J. S.
, and
Denn
,
M. M.
,
1976
, “
Instabilities in Polymer Processing
,”
AIChE J.
,
22
(
2
), pp.
209
239
.10.1002/aic.690220202
38.
Zhou
,
C.
, and
Kumar
,
S.
,
2010
, “
Thermal Instabilities in Melt Spinning of Viscoelastic Fibers
,”
J. Non-Newtonian Fluid Mech.
,
165
(
15–16
), pp.
879
891
.10.1016/j.jnnfm.2010.04.009
39.
Noroozi
,
S.
,
Alamdari
,
H.
,
Arne
,
W.
,
Larson
,
R. G.
, and
Taghavi
,
S. M.
,
2017
, “
Regularized String Model for Nanofibre Formation in Centrifugal Spinning Methods
,”
J. Fluid Mech.
,
822
, pp.
202
234
.10.1017/jfm.2017.279
40.
Osswald
,
T.
, and
Hernández-Ortíz
,
J. P.
,
2006
,
Polymer Processing-Modeling and Simulation
,
Hanser Publishers
, Munich,
Germany
.
41.
Furlani
,
E. P.
,
Delametter
,
C. N.
,
Chwalek
,
J. M.
, and
Trauernicht
,
D. P.
,
2001
, “
Surface Tension Induced Instability of Viscous Liquid Jets
,”
Proceeding of the Fourth International Conference on Modeling and Simulation of Microsystems
, Hilton Head Island, SC, Mar. 19–21, pp.
186
189
.https://www.flow3d.com/wp-content/uploads/2014/08/Surface-Tension-Induced-Instability-of-Viscous-Liquid-Jets.pdf
42.
Ting
,
L.
, and
Keller
,
J. B.
,
1990
, “
Slender Jets and Thin Sheets With Surface Tension
,”
SIAM J. Appl. Math.
,
50
(
6
), pp.
1533
1546
.10.1137/0150090
43.
Schiesser
,
W. E.
, and
Griffiths
,
G. W.
,
2009
,
A Compendium of Partial Differential Equation Models: Method of Lines Analysis With Matlab
,
Cambridge University Press
, New York.
44.
Balachandran
,
P.
,
2011
,
Engineering Fluid Mechanics
,
Prentice Hall of India
, New Delhi, India.
45.
Padron
,
S.
,
Patlan
,
R.
,
Gutierrez
,
J.
,
Santos
,
N.
,
Eubanks
,
T.
, and
Lozano
,
K.
,
2012
, “
Production and Characterization of Hybrid BEH-PPV/PEO Conjugated Polymer Nanofibers by Forcespinning
,”
J. Appl. Polym. Sci.
,
125
(
5
), pp.
3610
3616
.10.1002/app.36420
You do not currently have access to this content.