Abstract

In this study, vibration control problem is considered for a coordinative master–slave two-link rigid–flexible manipulator. By the help of Hamilton's principle, the dynamic model of the master–slave two-link rigid–flexible manipulator is expressed using nonlinear partial differential equations (PDEs). Based on the nonlinear PDE model, we propose a novel coordination controller for the master–slave system. The proposed controller can achieve the following three objectives: (1) making the master manipulator track the given angles; (2) making the slave manipulator track the angles of the master manipulator; and (3) repressing the deflection and vibration of both the master and the slave flexible manipulators. Stability analysis of the closed-loop system is proven by LaSalle's invariance principle. Two simulation cases are given to validate the effectiveness of the coordination controller.

References

References
1.
Zhao
,
Z.
,
He
,
X.
,
Ren
,
Z.
, and
Wen
,
G.
,
2019
, “
Boundary Adaptive Robust Control of a Flexible Riser System With Input Nonlinearities
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
49
(
10
), pp.
1971
1980
.10.1109/TSMC.2018.2882734
2.
Mahto
,
S.
,
2014
, “
Shape Optimization of Revolute-Jointed Single Link Flexible Manipulator for Vibration Suppression
,”
Mech. Mach. Theory
,
75
, pp.
150
160
.10.1016/j.mechmachtheory.2013.12.005
3.
Kumar
,
P.
, and
Pratiher
,
B.
,
2019
, “
Nonlinear Modeling and Vibration Analysis of a Two-Link Flexible Manipulator Coupled With Harmonically Driven Flexible Joints
,”
Mech. Mach. Theory
,
131
, pp.
278
299
.10.1016/j.mechmachtheory.2018.09.016
4.
Korayem
,
M.
, and
Dehkordi
,
S.
,
2019
, “
Dynamic Modeling of Flexible Cooperative Mobile Manipulator With Revolute-Prismatic Joints for the Purpose of Moving Common Object With Closed Kinematic Chain Using the Recursive Gibbscappell Formulation
,”
Mech. Mach. Theory
,
137
, pp.
254
279
.10.1016/j.mechmachtheory.2019.03.026
5.
Shitole
,
C.
, and
Sumathi
,
P.
,
2015
, “
Sliding DFT-Based Vibration Mode Estimator for Single-Link Flexible Manipulator
,”
IEEE/ASME Trans. Mechatronics
,
20
(
6
), pp.
3249
3256
.10.1109/TMECH.2015.2391132
6.
Zhao
,
Z.
,
Ahn
,
C. K.
, and
Li
,
H.-X.
,
2020
, “
Dead zone Compensation and Adaptive Vibration Control of Uncertain Spatial Flexible Riser Systems
,”
IEEE/ASME Trans. Mechatronic
,
25
(
3
), pp.
1398
1408
.10.1109/TMECH.2020.2975567
7.
Chang
,
H.
,
Kim
,
S. J.
, and
Kim
,
J.
,
2017
, “
Development of Self-Stabilizing Manipulator Inspired by the Musculoskeletal System Using the Lyapunov Method
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1425
1437
.10.1109/TRO.2017.2723627
8.
He
,
W.
,
He
,
X.
,
Zou
,
M.
, and
Li
,
H.
,
2019
, “
PDE Model-Based Boundary Control Design for a Flexible Robotic Manipulator With Input Backlash
,”
IEEE Trans. Control Syst. Technol.
,
27
(
2
), pp.
790
797
.10.1109/TCST.2017.2780055
9.
Zhang
,
L.
, and
Liu
,
J.
,
2013
, “
Adaptive Boundary Control for Flexible Two-Link Manipulator Based on Partial Differential Equation Dynamic Model
,”
IET Control Theory Appl.
,
7
(
1
), pp.
43
51
.10.1049/iet-cta.2011.0593
10.
He
,
W.
,
Meng
,
T.
,
Huang
,
D.
, and
Li
,
X.
,
2018
, “
Adaptive Boundary Iterative Learning Control for an Euler-Bernoulli Beam System With Input Constraint
,”
IEEE Trans. Neural Networks Learn. Syst.
,
29
(
5
), pp.
1539
1549
.10.1109/TNNLS.2017.2673865
11.
He
,
W.
,
Ouyang
,
Y.
, and
Jie
,
H.
,
2017
, “
Vibration Control of a Flexible Robotic Manipulator in the Presence of Input Dead zone
,”
IEEE Trans. Ind. Inf.
,
13
(
1
), pp.
48
59
.10.1109/TII.2016.2608739
12.
Ji
,
N.
, and
Liu
,
J.
,
2018
, “
Vibration Control for a Flexible Satellite With Input Constraint Based on Nussbaum Function Via Backstepping Method
,”
Aerosp. Sci. Technol.
,
77
, pp.
563
572
.10.1016/j.ast.2018.03.049
13.
Liu
,
Z.
,
Liu
,
J.
, and
He
,
W.
,
2017
, “
Modeling and Vibration Control of a Flexible Aerial Refueling Hose With Variable Lengths and Input Constraint
,”
Automatica
,
77
, pp.
302
310
.10.1016/j.automatica.2016.11.002
14.
Ji
,
N.
,
Liu
,
Z.
,
Liu
,
J.
, and
He
,
W.
,
2018
, “
Vibration Control for a Nonlinear Three-Dimensional Euler–Bernoulli Beam Under Input Magnitude and Rate Constraints
,”
Nonlinear Dyn.
,
91
(
4
), pp.
2551
2570
.10.1007/s11071-017-4031-y
15.
Liu
,
Z.
,
He
,
X.
,
Ki
,
A. C.
, and
Han-Xiong
,
L.
,
2020
, “
Vibration Control for Spatial Aerial Refueling Hoses With Bounded Actuators
,”
IEEE Trans. Ind. Electron.
, epub.10.1109/TIE.2020.2984442
16.
Jiang
,
T.
,
Liu
,
J.
, and
He
,
W.
,
2018
, “
Adaptive Boundary Control for a Flexible Manipulator With State Constraints Using a Barrier Lyapunov Function
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
8
), p.
081018
.10.1115/1.4039364
17.
Cao
,
F.
, and
Liu
,
J.
,
2017
, “
Vibration Control for a Rigid-Flexible Manipulator With Full State Constraints Via Barrier Lyapunov Function
,”
J. Sound Vib.
,
406
, pp.
237
252
.10.1016/j.jsv.2017.05.050
18.
Liu
,
Z.
,
Liu
,
J.
, and
He
,
W.
,
2018
, “
Boundary Control of an Euler–Bernoulli Beam With Input and Output Restrictions
,”
Nonlinear Dyn.
,
92
(
2
), pp.
531
541
.10.1007/s11071-018-4073-9
19.
Xing
,
X.
, and
Liu
,
J.
,
2018
, “
Switching Fault-Tolerant Control of a Moving Vehicle-Mounted Flexible Manipulator System With State Constraints
,”
J. Franklin Inst.
,
355
(
6
), pp.
3050
3078
.10.1016/j.jfranklin.2018.02.018
20.
Gao
,
S.
, and
Liu
,
J.
,
2020
, “
Adaptive Fault-Tolerant Vibration Control of a Wind Turbine Blade With Actuator Stuck
,”
Int. J. Control
,
93
(
3
), pp.
713
724
.10.1080/00207179.2018.1484572
21.
Zhao
,
Z.
,
He
,
X.
, and
Ahn
,
C. K.
,
2019
, “
Boundary Disturbance Observer-Based Control of a Vibrating Single-Link Flexible Manipulator
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
, epub.10.1109/TSMC.2019.2912900
22.
Jiang
,
T.
,
Liu
,
J.
, and
He
,
W.
,
2017
, “
A Robust Observer Design for a Flexible Manipulator Based on a PDE Model
,”
J. Vib. Control
,
23
(
6
), pp.
871
882
.10.1177/1077546315587443
23.
He
,
W.
,
Meng
,
T.
,
He
,
X.
, and
Ge
,
S. S.
,
2018
, “
Unified Iterative Learning Control for Flexible Structures With Input Constraints
,”
Automatica
,
96
, pp.
326
336
.10.1016/j.automatica.2018.06.051
24.
Ganjefar
,
S.
,
Sarajchi
,
M. H.
, and
Hamidi-Beheshti
,
M. T.
,
2015
, “
Adaptive Sliding Mode Controller Design for Nonlinear Teleoperation Systems Using Singular Perturbation Method
,”
Nonlinear Dyn.
,
81
(
3
), pp.
1435
1452
.10.1007/s11071-015-2078-1
25.
Islam
,
S.
,
Liu
,
P.
, and
Saddik
,
A. E.
,
2015
, “
Nonlinear Adaptive Control for Teleoperation Systems With Symmetrical and Unsymmetrical Time-Varying Delay
,”
Int. J. Syst. Sci.
,
46
(
16
), pp.
2928
2938
.10.1080/00207721.2014.880528
26.
Li
,
Z.
,
Xia
,
Y.
,
Wang
,
D.
,
Zhai
,
D.
,
Su
,
C.
, and
Zhao
,
X.
,
2016
, “
Neural Network-Based Control of Networked Trilateral Teleoperation With Geometrically Unknown Constraints
,”
IEEE Trans. Cybern.
,
46
(
5
), pp.
1051
1064
.10.1109/TCYB.2015.2422785
27.
Yang
,
X.
,
Hua
,
C.
,
Yan
,
J.
, and
Guan
,
X.
,
2015
, “
A New Master-Slave Torque Design for Teleoperation System by t-s Fuzzy Approach
,”
IEEE Trans. Control Syst. Technol.
,
23
(
4
), pp.
1611
1619
.10.1109/TCST.2014.2375813
28.
Cao
,
F.
, and
Liu
,
J.
,
2018
, “
Boundary Control for a Constrained Two-Link Rigid-Flexible Manipulator With Prescribed Performance
,”
Int. J. Control
,
91
(
5
), pp.
1091
1103
.10.1080/00207179.2017.1305513
29.
Abhyankar
,
N. S.
,
Hall
,
E. K.
, and
Hanagud
,
S. V.
,
1993
, “
Chaotic Vibrations of Beams: Numerical Solution of Partial Differential Equations
,”
ASME J. Appl. Mech.
,
60
(
1
), pp.
167
174
.10.1115/1.2900741
30.
Tzes
,
A.
,
Yurkovich
,
S.
, and
Langer
,
F. D.
,
1989
, “
A Method for Solution of the Euler-Bernoulli Beam Equation in Flexible-Link Robotic Systems
,”
IEEE International Conference on Systems Engineering
, Fairborn, OH, Aug. 24–26, pp.
557
560
.10.1109/ICSYSE.1989.48736
31.
Zhao
,
Z.
,
Ahn
,
C. K.
, and
Li
,
H.-X.
,
2020
, “
Boundary Anti-Disturbance Control of a Spatially Nonlinear Flexible String System
,”
IEEE Trans. Ind. Electron.
,
67
(
6
), pp.
4846
4856
.10.1109/TIE.2019.2931230
32.
Liu
,
Z.
,
Zhao
,
Z.
, and
Ahn
,
C. K.
,
2020
, “
Boundary Constrained Control of Flexible String Systems Subject to Disturbances
,”
IEEE Trans. Circuits Syst. II
,
67
(
1
), pp.
112
116
.10.1109/TCSII.2019.2901283
33.
Zhao
,
Z.
, and
Liu
, Z.
,
2021
, “
Finite-Time Convergence Disturbance Rejection Control for a Flexible Timoshenko Manipulator
,”
IEEE/CAA J. Autom. Sinicadoi
,
8
(
1
), pp.
157
168
.10.1109/JAS.2020.1003378
You do not currently have access to this content.