Abstract

Modern computers are generally equipped with multicore central processing units (CPUs). There has been a great interest to introduce a parallelized harmonic balance method to make full use of computing resources and improve the efficiency in dealing with nonlinear dynamic analysis of high-dimensional spatially discretized models of continuous systems. In this work, an optimized efficient Galerkin averaging-incremental harmonic balance (EGA-IHB) method for solving high-dimensional spatially discretized models of continuous systems based on parallel computing is introduced. Independent sampling and EGA procedures are introduced to achieve generality. Optimized parallel implementation based on tensor contraction is introduced in time-domain series calculations and the quasi-Newton method is used in the iteration procedure, which greatly accelerates computational speeds of both serial and parallel implementations. Especially, the parallel implementation achieves high parallel efficiency when multiple CPU cores are used. Due to its high computational efficiency and good robustness, the proposed method has the potential to be used as a powerful universal solver and analyzer for general types of continuous systems.

References

1.
Howison
,
J.
,
Thomas
,
J.
, and
Ekici
,
K.
,
2018
, “
Aeroelastic Analysis of a Wind Turbine Blade Using the Harmonic Balance Method
,”
Wind Energy
,
21
(
4
), pp.
226
241
.10.1002/we.2157
2.
Yu, Z., and Xu., Y. L., 1999, “Non-Linear Vibration of Cable-damper Systems Part I: Formulation,”
J. Sound Vib.
, 225(3), pp. 447–463.10.1006/jsvi.1999.2203
3.
Ghayesh
,
M. H.
, and
Amabili
,
M.
,
2013
, “
Nonlinear Dynamics of an Axially Moving Timoshenko Beam With an Internal Resonance
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
39
52
.10.1007/s11071-013-0765-3
4.
Zhang
,
X. X.
,
Xu
,
J.
,
Zhang
,
S.
, and
Huang
,
Y.
,
2015
, “
Experiment on Parameter Identification of a Time Delay Coupled Nonlinear System
,”
IFAC Papersonline
,
48
(
11
), pp.
694
699
.10.1016/j.ifacol.2015.09.269
5.
Leung
,
A. Y. T.
,
1992
, “
Nonlinear Modal Analysis of Frames by the Incremental Harmonic Balance Method
,”
Dyn. Stability Syst.
,
7
(
1
), pp.
43
58
.10.1080/02681119208806126
6.
Huang
,
J. L.
,
Su
,
R. K. L.
,
Li
,
W. H.
, and
Chen
,
S. H.
,
2011
, “
Stability and Bifurcation of an Axially Moving Beam Tuned to Three-to-One Internal Resonances
,”
J. Sound Vib.
,
330
(
3
), pp.
471
485
.10.1016/j.jsv.2010.04.037
7.
Zheng
,
G.
,
Ko
,
J. M.
, and
Ni
,
Y. Q.
,
2002
, “
Super-Harmonic and Internal Resonances of a Suspended Cable With Nearly Commensurable Natural Frequencies
,”
Nonlinear Dyn.
,
30
(
1
), pp.
55
70
.10.1023/A:1020395922392
8.
Liu
,
G.
,
Lv
,
Z. R.
,
Liu
,
J. K.
, and
Chen
,
Y. M.
,
2018
, “
Quasi-Periodic Aeroelastic Response Analysis of an Airfoil With External Store by Incremental Harmonic Balance Method
,”
Int. J. Non-Linear Mech.
,
100
, pp.
10
19
.10.1016/j.ijnonlinmec.2018.01.004
9.
Luo
,
A. C. J.
, and
Yu
,
B.
,
2016
, “
Analytical Routes of Period-m Motions to Chaos in a Parametric, Quadratic Nonlinear Oscillator
,”
Int. J. Dyn. Control
,
4
(
1
), pp.
1
22
.10.1007/s40435-014-0112-7
10.
Lau
,
S. L.
, and
Cheung
,
Y. K.
,
1981
, “
Amplitude Incremental Variational Principle for Nonlinear Vibration of Elastic Systems
,”
ASME J. Appl. Mech.
,
48
(
4
), pp.
959
964
.10.1115/1.3157762
11.
Leamy
,
M. J.
, and
Perkins
,
N. C.
,
1998
, “
Nonlinear Periodic Response of Engine Accessory Drives With Dry Friction Tensioners
,”
ASME J. Vib. Acoust.
,
120
(
4
), pp.
909
916
.10.1115/1.2893919
12.
Zhao
,
Q.
,
Liu
,
Z.
,
He
,
Y.
,
Yao
,
H.
, and
Wen
,
B.
,
2016
, “
Dynamic Stress Prediction Method for Rubbing Blades
,”
J. Vibroengineering
,
18
(
1
), pp.
1
12
.https://www.jvejournals.com/article/16087/pdf
13.
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2014
, “
Nonlinear Dynamics of a High-Dimensional Model of a Rotating Euler–Bernoulli Beam Under the Gravity Load
,”
ASME J. Appl. Mech.
,
81
(
10
), p.
101007
.10.1115/1.4028046
14.
Xu
,
G. Y.
, and
Zhu
,
W. D.
,
2010
, “
Nonlinear and Time-Varying Dynamics of High-Dimensional Models of a Translating Beam With a Stationary Load Subsystem
,”
ASME J. Vib. Acoust.
,
132
(
6
), pp.
323
342
.10.1115/1.4000464
15.
Kim
,
Y. B.
, and
Noah
,
S. T.
,
1991
, “
Response and Bifurcation Analysis of a MDOF Rotor System With a Strong Nonlinearity
,”
Nonlinear Dyn.
,
2
(
3
), pp.
215
234
.10.1007/BF00045725
16.
Wang
,
X. F.
, and
Zhu
,
W. D.
,
2015
, “
A Modified Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Broyden's Method
,”
Nonlinear Dyn.
,
81
(
1–2
), pp.
981
989
.10.1007/s11071-015-2045-x
17.
Ju
,
R.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2020
, “
An Efficient Galerkin Averaging-Incremental Harmonic Balance Method Based on the Fast Fourier Transform and Tensor Contraction
,”
ASME J. Vib. Acoust.
,
142
(
6
), pp.
1
38
.10.1115/1.4047235
18.
Huang, J. L., Zhou, W. J., and Zhu, W. D.
,
2019
, “
Quasi-Periodic Motions of High-Dimensional Nonlinear Models of a Translating Beam with a Stationary Load Subsystem Under Harmonic Boundary Excitation
,”
J. Sound Vib.
, 462(8), p. 114870.https://pdf.sciencedirectassets.com/272606/1-s2.0-S0022460X19X0019X/1-s2.0-S0022460X19304304/am.pdf?X-Amz-Security-Token=IQoJb3JpZ2luX2VjEHYaCXVzLWVhc3QtMSJGMEQCIBbLm0ZTk%2FO0N20j1MUnGaSj3QPeMoAP9MM84cvjhgL2AiB0xWpdi2e8ZSjXJpoRy3TnlAloILHf%2BGVFzpsorzvqByqDBAjP%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F8BEAQaDDA1OTAwMzU0Njg2NSIMvI%2Bwx6cL%2FEMvce%2BCKtcDfwaTb6fznGf%2BFAmrQPBEeIhe5qog0WZfAm6R81%2BqeNHHHuUM3r6ShwKtIrugFvotIGIrXLA5bXaB3dvWpcfiaxHO6AIOz4f3wK87Q%2FTUN6SjJ29RwYWDMwstsicOjkSllPbgdL6QYHNE6ZjnN0CUPJ79i70ytYrZB7T2NW2bykTUBNMm1AcuzcDhrLmrF3OAYeI1PNRDGlcLox26d%2B7wVkRfc2ctKXdIzZ%2FBF3z4v9bLXee20%2FAfxPZS2k7hxhsAesQoaYAmHfY6Xx5%2Ft3jre41J3Bb7YgD1h3NtDulabNfsVWmWXAlF3ITzl6IUN%2BazmACqpvXJBb%2FiFJh1jWFVIDzruUVhB1xIQqpP7n4vlnRNa7pLzmao7n72WDZbz%2F8RRM4YXoiHqifAqtsiZ4f6mnvNVTdLlFD3ju88Lbo5H%2FdQpfoh29yJN4cWeIjJ3c%2FT05PuvniJl6lN1cBBeSnwZGzufeZSnhaGAsGWug1z4atv37w%2BRTcWKyJQlqNNfLYMm7%2FP5Kno1TFQEUOA1lqP3wNXdza%2BGwJUJYxq%2Futc9igXYJbCXFWYPvgpaYrScl%2B2Drgs9E5bz867Q7xGR%2BfFaSI2fcKyDg6Mz%2BTKaJlZvBd%2Bb%2B3htY9SMKO6oIoGOqYB2kYoJZDsygN4okCnz%2Fi0BCBcL%2BM6bKmOxkb8av4WqSR30mK66QSuzRozIKRpNPGYkEoidMy2lGF5lKlEDTuVRx0W2MmQYkCGCvwbsAKWjNeVOMasMyNhCi5hBx2jUXEj8%2FqtFhN6eXzTG3iTkkX%2BALKJkImk0x%2F1SF8iQbccO%2FAjM8vznC1nOxgPod3DpIcLa82VGhweZw5CIH0giG3b21TTyOFMEw%3D%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20210920T062902Z&X-Amz-SignedHeaders=host&X-Amz-Expires=300&X-Amz-Credential=ASIAQ3PHCVTYUTHKL2HJ%2F20210920%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=d5b4a89f9fdbab55faf6ae0b5fb4490d51614168086fd044a973b1d1bb3da14b&hash=925d804cb2ea2294e33a4da1eb63f2e3a247679785a85ed1eb8b7feac9af6693&host=68042c943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61&pii=S0022460X19304304&tid=pdf-2cac4d89-25fd-47c9-bb11-4f776ea74bee&sid=b141d23487164240485b59e-84639968dc0dgxrqb&type=client
19.
Lau
,
S. L.
, and
Yuen
,
S. W.
,
2015
, “
Effects of in-Plane Load on Nonlinear Panel Flutter by Incremental Harmonic Balance Method
,”
AIAA J.
,
29
(
9
), pp.
1472
1479
.10.2514/3.10762
20.
Cho
,
D. S.
,
Vladimir
,
N.
, and
Choi
,
T. M.
,
2015
, “
Natural Vibration Analysis of Stiffened Panels With Arbitrary Edge Constraints Using the Assumed Mode Method
,”
Proc. Inst. Mech. Eng. Part M J. Eng. Maritime Environ.
, 229(4), pp. 340–349.10.1177/1475090214521179
21.
Barney
,
B.
,
2003
,
Introduction to Parallel Computing
,
University of Newcastle upon Tyne
, Newcastle, UK.
22.
Golub
,
G. H.
, and
Van Loan
,
C. F.
,
2014
,
Matrix Computations
, 4th ed.,
Johns Hopkins Press
, Baltimore, MD.
23.
Hou
,
T. Y.
, and
Wu
,
X. H.
,
1997
, “
A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media
,”
J. Comput. Phys.
,
134
(
1
), pp.
169
189
.10.1006/jcph.1997.5682
24.
Gropp
,
W. D.
,
Keyes
,
D. E.
,
McInnes
,
L. C.
, and
Tidriri
,
M. D.
,
2000
, “
Globalized Newton-Krylov-Schwarz Algorithms and Software for Parallel Implicit CFD
,”
Int. J. High Perform. Comput. Appl.
,
14
(
2
), pp.
102
136
.10.1177/109434200001400202
25.
Ju
,
R.
,
Fan
,
W.
, and
Zhu
,
W. D.
,
2020
, “
Comparison Between the Incremental Harmonic Balance Method and Alternating Frequency/Time-Domain Method
,”
ASME J. Vib. Acoust.
,
143
(
2
), p. 024501
.10.1115/1.404817
26.
Noah
,
S. T.
, and
Kim
,
Y. B.
,
1991
, “
Stability and Bifurcation Analysis of Oscillators With Piecewise-Linear Characteristics—A General Approach
,”
J. Appl. Mech.
,
58
(
2
), pp.
545
553
.10.1115/1.2897218
27.
Meyers
,
S.
,
1998
,
Effective C++: 50 Specific Ways to Improve Your Programs and Designs
, 2nd ed.,
Addison-Wesley Longman Publishing, Toronto, Canada
.
28.
Kronbichler
,
M.
, and
Kormann
,
K.
,
2012
, “
A Generic Interface for Parallel Cell-Based Finite Element Operator Application
,”
Comput. Fluids
,
63
, pp.
135
147
.10.1016/j.compfluid.2012.04.012
29.
Anderson
,
E.
,
Bai
,
Z.
,
Bischof
,
C.
,
Blackford
,
L. S.
,
Demmel
,
J.
,
Dongarra
,
J. J.
,
Croz
,
J. D.
,
Hammarling
,
S.
,
Greenbaum
,
A.
, and
Mckenney
,
A.
,
1999
,
LAPACK Users' Guide
, 3rd ed.,
Society for Industrial and Applied Mathematics
, Philadelphia, PA.
30.
Zhang
,
D. W.
,
Liu
,
J. K.
,
Huang
,
J. L.
, and
Zhu
,
W. D.
,
2018
, “
Periodic Responses of a Rotating Hub-Beam System With a Tip Mass Under Gravity Loads by the Incremental Harmonic Balance Method
,”
Shock Vib.
,
2018
, p. 8178274.10.1155/2018/8178274
31.
Wang
,
F. X.
, and
Luo
,
A. C. J.
,
2013
, “
Analytical Periodic Motions in a Parametrically Excited, Nonlinear Rotating Blade
,”
J. Eur. Phys., Spec. Top.
,
222
(
7
), pp.
1707
1731
.10.1140/epjst/e2013-01957-1
32.
Wang
,
F. X.
, and
Luo
,
A. C. J.
,
2012
, “
On the Stability of a Rotating Blade With Geometric Nonlinearity
,”
J. Appl. Nonlinear Dyn.
,
1
(
3
), pp.
263
286
.10.5890/JAND.2012.06.002
You do not currently have access to this content.