Abstract

In the current development of flexible multibody dynamics, the efficient and accurate consideration of distributed and nonlinear forces is an active area of research. Examples are, forces due to body-body contact or due to elastohydrodynamics (EHD). This leads to many additional modes for representing the local deformations in the areas on which those forces act. Recent publications show that these can be several hundred to several thousand additional modes. A conventional, monolithic numerical time integration scheme would lead to unacceptable computing times. This paper presents a method for an efficient time integration of such systems. The core idea is to treat the equations associated with modes representing local deformations separately. Using the Newmark formulas, a fixed point iteration is proposed for these separated equations, which can always be stabilized with decreasing step size. The concluding examples underline this property, as well as the fact that the proposed method massively outperforms the conventional, monolithic time integration with increasing number of modes.

References

1.
Shabana
,
A.
,
2013
,
Dynamics of Multibody Systems
, 4th ed.,
Cambridge University Press
,
New York
.
2.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Sub-Structures for Dynamic Analysis
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
3.
Witteveen
,
W.
,
2012
, “
On the Modal and Non-Modal Model Reduction of Metallic Structures With Variable Boundary Conditions
,”
World J. Mech.
,
02
(
06
), pp.
311
324
.10.4236/wjm.2012.26037
4.
Koutsovasilis
,
P.
, and
Beitelschmidt
,
M.
,
2008
, “
Comparison of Model Reduction Techniques for Large Mechanical Systems
,”
Multibody Syst. Dyn.
,
20
(
2
), pp.
111
128
.10.1007/s11044-008-9116-4
5.
Yuan
,
J.
,
El-Haddad
,
F.
,
Salles
,
L.
, and
Wong
,
C.
,
2018
, “
Numerical Assessment of Reduced Order Modeling Techniques for Dynamic Analysis of Jointed Structures With Contact Nonlinearities
,”
ASME
Paper No. GT2018-75303.10.1115/GT2018-75303
6.
Zu
,
Q. Q.
,
2004
,
Model Order Reduction Techniques
,
Springer Verlag
,
London
.
7.
Tamarozzi
,
T.
,
Ziegler
,
P.
,
Eberhard
,
P.
, and
Desmet
,
W.
,
2013
, “
Static Modes Switching in Gear Contact Simulation
,”
Mech. Mach. Theory
,
63
, pp.
89
106
.10.1016/j.mechmachtheory.2013.01.006
8.
Witteveen
,
W.
, and
Pichler
,
F.
,
2014
, “
Efficient Model Order Reduction for the Dynamics of Nonlinear Multilayer Sheet Structures With Trial Vector Derivatives
,”
Shock Vib.
,
2014
, pp.
1
16
.10.1155/2014/913136
9.
Witteveen
,
W.
, and
Irschik
,
H.
,
2009
, “
Efficient Mode-Based Computational Approach for Jointed Structures
,”
AIAA J.
,
47
(
1
), pp.
252
263
.10.2514/1.38436
10.
Pichler
,
F.
,
Witteveen
,
W.
, and
Fischer
,
P.
,
2017
, “
Reduced Order Modeling of Preloaded Bolted Structure in Multibody Systems by the Use of Trial Vector Derivatives
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051032
.10.1115/1.4036989
11.
Geradin
,
M.
, and
Rixen
,
D. J.
,
2016
, “
A Nodeless Dual Duperelement Formulation for Structural and Multibody Dynamics Application to Reduction of Contact Problems
,”
Int. J. Num. Methods Eng.
,
106
(
10
), pp.
773
793
.10.1002/nme.5136
12.
Sherif
,
K.
,
2012
, “
Novel Computationally Efficient Formulations for the Equations of Motion of a Modally Reduced Flexible Member Undergoing Large Rigid Body Motion
,” Ph.D. thesis, Johannes Kepler University, Linz, Austria.
13.
Sherif
,
K.
,
Witteveen
,
W.
,
Holl
,
H. J.
,
Irschik
,
H.
, and
Mayrhofer
,
K.
,
2013
, “
Effiziente Simulation von Arbeitswalze und Stützwalze mit Berücksichtigung lokaler Effekte (in German)
,” SIRM 2013—10. Internationale Tagung Schwingungen in rotierenden Maschinen, Berlin, Deutschland, Feb. 25–27, Paper No. ABS-219.
14.
Sherif
,
K.
,
Witteveen
,
W.
, and
Mayrhofer
,
K.
,
2012
, “
Quasi-Static Consideration of High-Frequency Modes for More Efficient Flexible Multibody Simulations
,”
Acta Mech.
,
223
(
6
), pp.
1285
1305
.10.1007/s00707-012-0624-1
15.
Witteveen
,
W.
, and
Pichler
,
F.
,
2019
, “
On the Relevance of Inertia Related Terms in the Equations of Motion of a Flexible Body in the Floating Frame of Reference Formulation
,”
Multibody Syst. Dyn.
,
46
(
1
), pp.
77
105
.10.1007/s11044-018-09662-0
16.
Sherif
,
K.
,
Irschik
,
H.
, and
Witteveen
,
W.
,
2012
, “
Transformation of Arbitrary Elastic Mode Shapes Into Pseudo-Free surface and Rigid Body Modes for Multibody Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021008
.10.1115/1.4005237
17.
MSC Nastran,
2013
, “
MSC Nastran 2013.1.1 Quick Reference Guide, Copyright@2014 MSC Software Cooperation
,” accessed Mar. 31, 2020, https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=DOC10525&cat=MSC__MD_NASTRAN_DOCUMENTATION&actp=LIST
18.
Negrut
,
D.
,
Rampalli
,
R.
,
Ottarsson
,
G.
, and
Sajdak
,
A.
,
2007
, “
On an Implementation of the HHT Method in the Context of Index 3 Differential Algebraic Equations of Multibody Dynamics
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
1
), pp.
73
85
.10.1115/1.2389231
19.
Hilber
,
H. M.
,
Hughes
,
T. J. R.
, and
Taylor
,
R. L.
,
1977
, “
Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics
,”
Earthquake Eng. Struct. Dyn.
,
5
(
3
), pp.
283
292
.10.1002/eqe.4290050306
20.
Liaa
,
L.
,
2011
, “
A Study of Inertia Relief Analysis
,”
52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference
, Denver, CO, Apr. 4–7.https://pdfs.semanticscholar.org/6e7c/9a0ba36d86ac73b3e2e213fa64e3b6c5b988.pdf
21.
Witteveen
,
W.
, and
Sherif
,
K.
,
2011
, “
POD Based Computation of Joint Interface Modes
,”
Linking Models and Experiments
(Volume Conference Proceedings of the Society for Experimental Mechanics Series), Vol.
2
,
T.
Proulx
, ed.,
Springer
,
New York
.10.2514/6.2011-2002
You do not currently have access to this content.