Abstract

We perform a detailed study of the dynamics of a nonlinear, one-dimensional oscillator driven by a periodic force under hysteretic damping, whose linear version was originally proposed and analyzed by Bishop (1955, “The Treatment of Damping Forces in Vibration Theory,” Aeronaut. J., 59(539), pp. 738–742). We first add a small quadratic stiffness term in the constitutive equation and construct the periodic solution of the problem by a systematic perturbation method, neglecting transient terms as t. We then repeat the analysis replacing the quadratic by a cubic term, which does not allow the solutions to escape to infinity. In both cases, we examine the dependence of the amplitude of the periodic solution on the different parameters of the model and discuss the differences with the linear model. We point out certain undesirable features of the solutions, which have also been alluded to in the literature for the linear Bishop's model, but persist in the nonlinear case as well. Finally, we discuss an alternative hysteretic damping oscillator model first proposed by Reid (1956, “Free Vibration and Hysteretic Damping,” Aeronaut. J., 60(544), pp. 283–283), which appears to be free from these difficulties and exhibits remarkably rich dynamical properties when extended in the nonlinear regime.

References

References
1.
Olejnik
,
P.
, and
Awrejcewicz
,
J.
,
2018
, “
Coupled Oscillators in Identification of Nonlinear Damping of a Real Parametric Pendulum
,”
Mech. Syst. Signal Process.
,
98
, pp.
91
107
.10.1016/j.ymssp.2017.04.037
2.
Scalerandi
,
M.
,
2016
, “
Power Laws and Elastic Nonlinearity in Materials With Complex Microstructure
,”
Phys. Lett. A
,
380
(
3
), pp.
413
421
.10.1016/j.physleta.2015.11.004
3.
Hu
,
W.
,
Yang
,
Z.
,
Gu
,
Y.
, and
Wang
,
X.
,
2017
, “
The Nonlinear Aeroelastic Characteristics of a Folding Wing With Cubic Stiffness
,”
J. Sound Vib.
,
400
, pp.
22
39
.10.1016/j.jsv.2017.04.002
4.
Tang
,
B.
,
Brennan
,
M.
,
Lopes
,
V.
, Jr.
,
Da Silva
,
S.
, and
Ramlan
,
R.
,
2016
, “
Using Nonlinear Jumps to Estimate Cubic Stiffness Nonlinearity: An Experimental Study
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
19
), pp.
3575
3581
.10.1177/0954406215606746
5.
Bishop
,
R. E. D.
,
1955
, “
The Treatment of Damping Forces in Vibration Theory
,”
Aeronaut. J.
,
59
(
539
), pp.
738
742
.10.1017/S0368393100117122
6.
Reid
,
T.
,
1956
, “
Free Vibration and Hysteretic Damping
,”
Aeronaut. J.
,
60
(
544
), pp.
283
283
.10.1017/S0368393100135242
7.
Elliott
,
S.
,
Tehrani
,
M. G.
, and
Langley
,
R.
,
2015
, “
Nonlinear Damping and Quasi-Linear Modelling
,”
Philos. Trans. R. Soc. A
,
373
(
2051
), p.
20140402
.10.1098/rsta.2014.0402
8.
Strogatz
,
S. H.
,
2018
,
Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering
,
CRC Press
,
Boca Raton, FL
.
9.
Bishop
,
R. E. D.
,
1956
, “
The General Theory of “Hysteretic Damping
,”
Aeronaut. Q.
,
7
(
1
), pp.
60
70
.10.1017/S0001925900010131
10.
Zhu
,
S.
, and
Zhang
,
Y.
,
2007
, “
Seismic Behaviour of Self-Centring Braced Frame Buildings With Reusable Hysteretic Damping Brace
,”
Earthquake Eng. Struct. Dyn.
,
36
(
10
), pp.
1329
1346
.10.1002/eqe.683
11.
Banks
,
H. T.
, and
Inman
,
D.
,
1991
, “
On Damping Mechanisms in Beams
,”
ASME J. Appl. Mech.
,
58
(
3
), pp.
716
723
.10.1115/1.2897253
12.
Montagnier
,
O.
, and
Hochard
,
C.
,
2007
, “
Dynamic Instability of Supercritical Driveshafts Mounted on Dissipative Supports—Effects of Viscous and Hysteretic Internal Damping
,”
J. Sound Vib.
,
305
(
3
), pp.
378
400
.10.1016/j.jsv.2007.03.061
13.
Genta
,
G.
,
2004
, “
On a Persistent Misunderstanding of the Role of Hysteretic Damping in Rotordynamics
,”
ASME J. Vib. Acoust.
,
126
(
3
), pp.
459
461
.10.1115/1.1759694
14.
Gandhi
,
F.
, and
Wolons
,
D.
,
1999
, “
Characterization of the Pseudoelastic Damping Behavior of Shape Memory Alloy Wires Using Complex Modulus
,”
Smart Mater. Struct.
,
8
(
1
), pp.
49
56
.10.1088/0964-1726/8/1/005
15.
Lewandowski
,
R.
, and
Chorążyczewski
,
B.
,
2010
, “
Identification of the Parameters of the Kelvin–Voigt and the Maxwell Fractional Models, Used to Modeling of Viscoelastic Dampers
,”
Comput. Struct.
,
88
(
1–2
), pp.
1
17
.10.1016/j.compstruc.2009.09.001
16.
Inaudi
,
J. A.
, and
Kelly
,
J. M.
,
1995
, “
Linear Hysteretic Damping and the Hilbert Transform
,”
J. Eng. Mech.
,
121
(
5
), pp.
626
632
.10.1061/(ASCE)0733-9399(1995)121:5(626)
17.
Vakakis
,
A. F.
,
Gendelman
,
O. V.
,
Bergman
,
L. A.
,
McFarland
,
D. M.
,
Kerschen
,
G.
, and
Lee
,
Y. S.
,
2008
,
Nonlinear Targeted Energy Transfer in Mechanical and Structural Systems
, Vol.
156
,
Springer
,
Dordrecht, The Netherlands
.
18.
Crandall
,
S. H.
,
1970
, “
The Role of Damping in Vibration Theory
,”
J. Sound Vib.
,
11
(
1
), pp.
3
18
.10.1016/S0022-460X(70)80105-5
19.
Ikhouane
,
F.
,
Mañosa
,
V.
, and
Rodellar
,
J.
,
2007
, “
Dynamic Properties of the Hysteretic Bouc-Wen Model
,”
Syst. Control Lett.
,
56
(
3
), pp.
197
205
.10.1016/j.sysconle.2006.09.001
20.
Shen
,
L.-J.
,
2020
, “
Fractional Derivative Models for Viscoelastic Materials at Finite Deformations
,”
Int. J. Solids Struct.
,
190
, pp.
226
237
.10.1016/j.ijsolstr.2019.10.025
21.
Mastroddi
,
F.
,
Martarelli
,
F.
,
Eugeni
,
M.
, and
Riso
,
C.
,
2019
, “
Time-and Frequency-Domain Linear Viscoelastic Modeling of Highly Damped Aerospace Structures
,”
Mech. Syst. Signal Process.
,
122
, pp.
42
55
.10.1016/j.ymssp.2018.12.023
22.
Dang
,
X.
, and
Tan
,
Y.
,
2005
, “
Neural Networks Dynamic Hysteresis Model for Piezoceramic Actuator Based on Hysteresis Operator of First-Order Differential Equation
,”
Phys. B
,
365
(
1–4
), pp.
173
184
.10.1016/j.physb.2005.03.046
23.
Liu
,
C.-S.
,
2006
, “
Reid's Passive and Semi-Active Hysteretic Oscillators With Friction Force Dependence on Displacement
,”
Int. J. Non-Linear Mech.
,
41
(
6–7
), pp.
775
786
.10.1016/j.ijnonlinmec.2006.04.006
24.
Kang
,
Y.-J.
,
Peng
,
L.-Y.
,
Liu
,
W.
, and
Lai
,
Z.-R.
,
2019
, “
Steady-State Response and Damping Control Effect of Reid-Tmd
,”
Int. J. Struct. Stab. Dyn.
,
19
(
10
), p.
1950122
.10.1142/S0219455419501220
25.
Spitas
,
C.
,
2009
, “
A Continuous Piecewise Internal Friction Model of Hysteresis for Use in Dynamical Simulations
,”
J. Sound Vib.
,
324
(
1–2
), pp.
297
316
.10.1016/j.jsv.2009.02.006
26.
Wiggins
,
S.
,
2003
,
Introduction to Applied Nonlinear Dynamical Systems and Chaos
, Vol.
2
,
Springer Science & Business Media
,
New York
.
27.
Shabana
,
A. A.
,
2018
,
Theory of Vibration: An Introduction
,
Springer
,
Cham, Switzerland
.
28.
Caughey
,
T.
, and
Vijayaraghavan
,
A.
,
1970
, “
Free and Forced Oscillations of a Dynamic System With ‘Linear Hysteretic Damping’ (Non-Linear Theory)
,”
Int. J. Non-Linear Mech.
,
5
(
3
), pp.
533
555
.10.1016/0020-7462(70)90015-6
29.
Caughey
,
T.
, and
Vijayaraghavan
,
A.
,
1976
, “
Stability Analysis of the Periodic Solution of a Piecewise-Linear Non-Linear Dynamic System
,”
Int. J. Non-Linear Mech.
,
11
(
2
), pp.
127
134
.10.1016/0020-7462(76)90010-X
30.
Muravskii
,
G.
,
2004
, “
On Frequency Independent Damping
,”
J. Sound Vib.
,
274
(
3–5
), pp.
653
668
.10.1016/j.jsv.2003.05.012
31.
Rafsanjani
,
A.
,
Akbarzadeh
,
A.
, and
Pasini
,
D.
,
2015
, “
Snapping Mechanical Metamaterials Under Tension
,”
Adv. Mater.
,
27
(
39
), pp.
5931
5935
.10.1002/adma.201502809
32.
Yang
,
H.
, and
Ma
,
L.
,
2019
, “
Multi-Stable Mechanical Metamaterials by Elastic Buckling Instability
,”
J. Mater. Sci.
,
54
(
4
), pp.
3509
3526
.10.1007/s10853-018-3065-y
33.
Zhu
,
S.
,
Tan
,
X.
,
Wang
,
B.
,
Chen
,
S.
,
Hu
,
J.
,
Ma
,
L.
, and
Wu
,
L.
,
2019
, “
Bio-Inspired Multistable Metamaterials With Reusable Large Deformation and Ultra-High Mechanical Performance
,”
Extreme Mech. Lett.
,
32
, p.
100548
.10.1016/j.eml.2019.100548
34.
Olejnik
,
P.
, and
Awrejcewicz
,
J.
,
2013
, “
Application of Hénon Method in Numerical Estimation of the Stick–Slip Transitions Existing in Filippov-Type Discontinuous Dynamical Systems With Dry Friction
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
723
736
.10.1007/s11071-013-0826-7
35.
Bountis
,
A.
,
Kaloudis
,
K.
, and
Spitas
,
C.
,
2020
, “
Supratransmission Phenomena in a One–Dimensional Array of Coupled Nonlinear Reid Oscillators
,” in preparation.
You do not currently have access to this content.