Abstract

In ensembles of oscillators, intrinsic fluctuations often enable nontrivial dynamics in seemingly simple situations. One of such effects occurs in coupled FitzHugh–Nagumo oscillators subjected to external noise. At the considered parameter values, the global deterministic attractor is the resting state. Additive noise invokes transient bursting: series of intermittent patches of spikes, followed by the abrupt decay to rest. Duration of this transient, small for weak noise, asymptotically diverges when the noise becomes stronger. Remarkably, in repeated trials at fixed parameters, the number of bursts until the ultimate decay strongly varies. Lifetime statistics for this transient in large ensembles of numerical realizations features the exponential distribution. Observations on transient bursting are confirmed by experiments with coupled analog electronic circuits, modeling the FitzHugh–Nagumo dynamics. We relate the exponential character of the distribution to the probability that the system, disturbed by noise, escapes the local attraction basin of the resting state.

References

References
1.
Keener
,
J. P.
, and
Sneyd
,
J.
,
1998
,
Mathematical Physiology
,
Springer
,
New York
.
2.
Ermentrout
,
G. B.
, and
Terman
,
D. H.
,
2010
,
Mathematical Foundations of Neuroscience
,
Springer
,
New York
.
3.
Rinzel
,
J.
,
1985
, “
Bursting Oscillations in an Excitable Membrane Model
,”
Ordinary and Partial Differential Equations
,
B. D.
Sleeman
, and
R. J.
Jarvis
, eds.,
Springer
,
Berlin
, pp.
304
316
.
4.
Medetov
,
B.
,
Weiß
,
R. G.
,
Zhanabaev
,
Z. Z.
, and
Zaks
,
M. A.
,
2015
, “
Numerically Induced Bursting in a Set of Coupled Neuronal Oscillators
,”
Commun. Nonlinear Sci. Numer. Simul.
,
20
(
3
), pp.
1090
1098
.10.1016/j.cnsns.2014.07.004
5.
FitzHugh
,
R.
,
1961
, “
Impulses and Physiological States in Theoretical Models of Nerve Membrane
,”
Biophys. J.
,
1
(
6
), pp.
445
466
.10.1016/S0006-3495(61)86902-6
6.
FitzHugh
,
R.
,
1969
, “
Mathematical Models of Excitation and Propagation in Nerve
,”
Biol. Eng.
, pp.
1
85
.
7.
Hindmarsh
,
J. L.
, and
Rose
,
R.
,
1984
, “
A Model of Neuronal Bursting Using Three Coupled First Order Differential Equations
,”
Proc. R. Society London. Ser. B
,
221
(
1222
), pp.
87
102
.10.1098/rspb.1984.0024
8.
Simo Domguia
,
U.
,
Abobda
,
L. T.
, and
Woafo
,
P.
,
2016
, “
Dynamical Behavior of a Capacitive Microelectromechanical System Powered by a Hindmarsh–Rose Electronic Oscillator
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051006
.10.1115/1.4032276
9.
Mao
,
X.
,
Zhou
,
X.
,
Shi
,
T.
, and
Qiao
,
L.
,
2019
, “
Dynamical Analysis of Coupled Bidirectional Fitzhugh–Nagumo Neuronal Networks With Multiple Delays
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
6
), p.
061002
.10.1115/1.4042998
10.
Mirzakhalili
,
E.
, and
Epureanu
,
B. I.
,
2019
, “
Probabilistic Analysis of Bifurcations in Stochastic Nonlinear Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
8
), p.
081009
.10.1115/1.4043669
11.
Concha
,
A.
, and
Garrido
,
R.
,
2015
, “
Parameter Estimation of the Fitzhugh–Nagumo Neuron Model Using Integrals Over Finite Time Periods
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
2
), p.
021023
.10.1115/1.4028601
12.
Cao
,
L.
, and
Chen
,
X.
,
2016
, “
A Novel Input–Output Linearization Minimum Sliding Mode Error Feedback Control for Synchronization of Fitzhugh–Nagumo Neurons
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041011
.10.1115/1.4032074
13.
Mannella
,
R.
,
2002
, “
Integration of Stochastic Differential Equations on a Computer
,”
Int. J. Mod. Phys. C
,
13
(
09
), pp.
1177
1194
.10.1142/S0129183102004042
14.
Douce
,
J.
, and
Shackleton
,
J.
,
1958
, “
LF Random-Signal Generator
,”
Electron. Radio Engineer
,
35
(
8
), pp.
295
297
.
15.
Tawfik
,
M.
,
Sancristobal
,
E.
,
Martin
,
S.
,
Gil
,
R.
,
Diaz
,
G.
,
Colmenar
,
A.
,
Peire
,
J.
,
Castro
,
M.
,
Nilsson
,
K.
,
Zackrisson
,
J.
,
Hkansson
,
L.
, and
Gustavsson
,
I.
,
2013
, “
Virtual Instrument Systems in Reality (Visir) for Remote Wiring and Measurement of Electronic Circuits on Breadboard
,”
IEEE Trans. Learning Technol.
,
6
(
1
), pp.
60
72
.10.1109/TLT.2012.20
16.
Bitter
,
R.
,
Mohiuddin
,
T.
, and
Nawrocki
,
M.
,
2017
, “
LabVIEW: Advanced Programming Techniques
,” 2nd ed.,
CRC Press
,
Boca Raton, FL
.
17.
Tomov
,
P.
,
Pena
,
R. F. O.
,
Roque
,
A. C.
, and
Zaks
,
M. A.
,
2016
, “
Mechanisms of Self-Sustained Oscillatory States in Hierarchical Modular Networks With Mixtures of Electrophysiological Cell Types
,”
Front. Comput. Neurosci.
,
10
, p.
23
.10.3389/fncom.2016.00023
You do not currently have access to this content.