Abstract

The accurate prediction of the dynamic characteristics of a structure is key to successful vibration control strategies. A typical vibration and wave propagation control is performed through periodic and shunted piezoelectric patches, also known as a smart material. Therefore, the smart metamaterial considers periodic arrangement of shunted piezoelectric patches providing a beam with attenuation properties which depend on the resonant behavior of the shunts. The vibration attenuation occurs due to an elastic-electrical system characterized by an internal resonance of the shunt circuit. The spectral element approach provides very accurate solutions for the structural dynamic response. In this paper, a beam-piezoelectric structure is introduced to focus on the control of flexural waves in beams with piezolayers connected to single and multiresonant shunt approaches. The smart structure is modeled using the spectral element method. It is shown that the effective wavenumber presents the locally resonant behavior at the same frequencies of the vibration attenuation for both single and multishunt approached, indicating that each shunt circuit is independently associated with a attenuation frequency. The spectral element approach presented in this paper shows to be an accurate and simple approach for the design smart metamaterial beams.

References

References
1.
Christensen
,
J.
,
Kadic
,
M.
,
Kraft
,
O.
, and
Wegener
,
M.
,
2015
, “
Vibrant Times for Mechanical Metamaterials
,”
MRS Commun.
,
5
(
3
), pp.
453
462
.10.1557/mrc.2015.51
2.
Zhang
,
Y.
,
Zhang
,
F.
,
Yan
,
Z.
,
Ma
,
Q.
,
Li
,
X.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2017
, “
Printing, Folding and Assembly Methods for Forming 3D Mesostructures in Advanced Materials
,”
Nat. Rev. Mater.
,
2
(
4
), pp.
1
17
.10.1038/natrevmats.2017.19
3.
Meng
,
H.
,
Chronopoulos
,
D.
,
Fabro
,
A. T.
,
Elmadih
,
W.
, and
Maskery
,
I.
,
2020
, “
Rainbow Metamaterials for Broadband Multi-Frequency Vibration Attenuation: Numerical Analysis and Experimental Validation
,”
J. Sound Vib.
,
465
, p.
115005
.10.1016/j.jsv.2019.115005
4.
Meng
,
H.
,
Chronopoulos
,
D.
,
Fabro
,
A. T.
,
Maskery
,
I.
, and
Chen
,
Y.
,
2020
, “
Optimal Design of Rainbow Elastic Metamaterials
,”
Int. J. Mech. Sci.
,
165
, p.
105185
.10.1016/j.ijmecsci.2019.105185
5.
Airoldi
,
L.
, and
Ruzzene
,
M.
,
2011
, “
Design of Tunable Acoustic Metamaterials Through Periodic Arrays of Resonant Shunted Piezos
,”
New J. Phys.
,
13
(
11
), p.
113010
.10.1088/1367-2630/13/11/113010
6.
Candido de Sousa
,
V.
,
Sugino
,
C.
,
De Marqui Junior
,
C.
, and
Erturk
,
A.
,
2018
, “
Adaptive Locally Resonant Metamaterials Leveraging Shape Memory Alloys
,”
J. Appl. Phys.
,
124
(
6
), p.
064505
.10.1063/1.5031168
7.
Gripp
,
J. A. B.
, and
Rade
,
D. A.
,
2018
, “
Vibration and Noise Control Using Shunted Piezoelectric Transducers: A Review
,”
Mech. Syst. Signal Process.
,
112
, pp.
359
383
.10.1016/j.ymssp.2018.04.041
8.
Brennan
,
M. J.
,
Elliott
,
S. J.
, and
Pinnington
,
R. J.
,
1997
, “
The Dynamic Coupling Between Piezoceramic Actuators and a Beam
,”
J. Acoust. Soc. Am.
,
102
(
4
), pp.
1931
1942
.10.1121/1.419687
9.
Casadei
,
F.
,
Ruzzene
,
M.
,
Dozio
,
L.
, and
Cunefare
,
K. A.
,
2010
, “
Broadband Vibration Control Through Periodic Arrays of Resonant Shunts: Experimental Investigation on Plates
,”
Smart Mater. Struct.
,
19
(
1
), p.
015002
.10.1088/0964-1726/19/1/015002
10.
Wang
,
G.
,
Cheng
,
J.
,
Chen
,
J.
, and
He
,
Y.
,
2017
, “
Multi-Resonant Piezoelectric Shunting Induced by Digital Controllers for Subwavelength Elastic Wave Attenuation in Smart Metamaterial
,”
Smart Mater. Struct.
,
26
(
2
), p.
025031
.10.1088/1361-665X/aa53ea
11.
Sales
,
T. P.
,
Rade
,
D. A.
, and
de Souza
,
L. C. G.
,
2013
, “
Passive Vibration Control of Flexible Spacecraft Using Shunted Piezoelectric Transducers
,”
Aerosp. Sci. Technol.
,
29
(
1
), pp.
403
412
.10.1016/j.ast.2013.05.001
12.
Fan
,
Y.
,
Collet
,
M.
,
Ichchou
,
M.
,
Li
,
L.
,
Bareille
,
O.
, and
Dimitrijevic
,
Z.
,
2016
, “
A Wave-Based Design of Semi-Active Piezoelectric Composites for Broadband Vibration Control
,”
Smart Mater. Struct.
,
25
(
5
), p.
055032
.10.1088/0964-1726/25/5/055032
13.
Yi
,
K.
,
Collet
,
M.
,
Ichchou
,
M.
, and
Li
,
L.
,
2016
, “
Flexural Waves Focusing Through Shunted Piezoelectric Patches
,”
Smart Mater. Struct.
,
25
(
7
), p.
075007
.10.1088/0964-1726/25/7/075007
14.
Wang
,
Y.
, and
Inman
,
D. J.
,
2012
, “
A Survey of Control Strategies for Simultaneous Vibration Suppression and Energy Harvesting Via Piezoceramics
,”
J. Intell. Mater. Syst. Struct.
,
23
(
18
), pp.
2021
2037
.10.1177/1045389X12444485
15.
Qureshi
,
E. M.
,
Shen
,
X.
, and
Chen
,
J.
,
2014
, “
Vibration Control Laws Via Shunted Piezoelectric Transducers: A Review
,”
Int. J. Aeronaut. Space Sci.
,
15
(
1
), pp.
1
19
.10.5139/IJASS.2014.15.1.1
16.
Yan
,
B.
,
Wang
,
K.
,
Hu
,
Z.
,
Wu
,
C.
, and
Zhang
,
X.
,
2017
, “
Shunt Damping Vibration Control Technology: A Review
,”
Appl. Sci.
,
7
(
5
), p.
494
.10.3390/app7050494
17.
Matten
,
G.
,
Collet
,
M.
,
Cogan
,
S.
, and
Sadoulet-Reboul
,
E.
,
2014
, “
Synthetic Impedance for Adaptive Piezoelectric Metacomposite
,”
Procedia Technol.
,
15
, pp.
84
89
.10.1016/j.protcy.2014.09.037
18.
Zhou
,
W.
,
Wu
,
Y.
, and
Zuo
,
L.
,
2015
, “
Vibration and Wave Propagation Attenuation for Metamaterials by Periodic Piezoelectric Arrays With High-Order Resonant Circuit Shunts
,”
Smart Mater. Struct.
,
24
(
6
), p.
065021
.10.1088/0964-1726/24/6/065021
19.
Sugino
,
C.
,
Ruzzene
,
M.
, and
Erturk
,
A.
,
2018
, “
Design and Analysis of Piezoelectric Metamaterial Beams With Synthetic Impedance Shunt Circuits
,”
IEEE/ASME Trans. Mechatronics
,
23
(
5
), pp.
2144
2155
.10.1109/TMECH.2018.2863257
20.
Ghaderi
,
P.
, and
Dick
,
A. J.
,
2013
, “
Parametric Resonance Based Piezoelectric Micro-Scale Resonators: Modeling and Theoretical Analysis
,”
ASME J. Comput. Nonlinear Dyn.
,
8
(
1
), p.
011004
.10.1115/1.4006429
21.
Liu
,
Y.
, and
Dick
,
A. J.
,
2015
, “
Numerical Analysis of Transient Wave Propagation in Nonlinear One-Dimensional Waveguides by Using the Spectral Finite Element Method
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
5
), p.
051003
.10.1115/1.4028015
22.
Cardella
,
D.
,
Celli
,
P.
, and
Gonella
,
S.
,
2016
, “
Manipulating Waves by Distilling Frequencies: A Tunable Shunt-Enabled Rainbow Trap
,”
Smart Mater. Struct.
,
25
(
8
), p.
085017
.10.1088/0964-1726/25/8/085017
23.
Doyle
,
J. F.
,
1997
, “
Wave Propagation in Structures: Spectral Analysis Using Fast Discrete Fourier Transforms
,”
Mechanical Engineering
, 2nd ed.,
Springer-Verlag
,
New York
.
24.
Lee
,
U.
,
2004
,
Spectral Element Method in Structural Dynamics
,
BInha University Press
,
Singapore
.
25.
Gopalakrishnan
,
S.
,
2016
,
Wave Propagation in Materials and Structures
,
CRC Press
,
Boca Raton, FL
.
26.
Dutkiewicz
,
M.
, and
Machado
,
M.
,
2019
, “
Measurements in Situ and Spectral Analysis of Wind Flow Effects on Overhead Transmission Lines
,”
Sound Vib.
,
53
(
4
), pp.
161
175
.10.32604/sv.2019.04803
27.
Machado
,
M.
,
Dutkiewicz
,
M.
,
Matt
,
C.
, and
Castello
,
D.
,
2020
, “
Spectral Model and Experimental Validation of Hysteretic and Aerodynamic Damping in Dynamic Analysis of Overhead Transmission Conductor
,”
Mech. Syst. Signal Process.
,
136
(
1
), p.
106483
.10.1016/j.ymssp.2019.106483
28.
Dutkiewicz
,
M.
, and
Machado
,
M. R.
,
2019
, “
Spectral Approach in Vibrations of Overhead Transmission Lines
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
471
, p.
052029
.10.1088/1757-899X/471/5/052029
29.
Dutkiewicz
,
M.
, and
Machado
,
M. R.
,
2019
, “
Dynamic Response of Overhead Transmission Line in Turbulent Wind Flow With Application of the Spectral Element Method
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
471
, p.
052031
.10.1088/1757-899X/471/5/052031
30.
Lee
,
U.
, and
Kim
,
J.
,
2000
, “
Dynamics of Elastic-Piezoelectric Two-Layer Beams Using Spectral Element Method
,”
Int. J. Solids Struct.
,
37
(
32
), pp.
4403
4417
.10.1016/S0020-7683(99)00154-7
31.
Lee
,
U.
, and
Kim
,
J.
,
2001
, “
Spectral Element Modeling for the Beams Treated With Active Constrained Layer Damping
,”
Int. J. Solids Struct.
,
38
(
32–33
), pp.
5679
5702
.10.1016/S0020-7683(00)00360-7
32.
Park
,
H. W.
,
Kim
,
E. J.
,
Lim
,
K. L.
, and
Sohn
,
H.
,
2010
, “
Spectral Element Formulation for Dynamic Analysis of a Coupled Piezoelectric Wafer and Beam System
,”
Comput. Struct.
,
88
(
9–10
), pp.
567
580
.10.1016/j.compstruc.2010.01.010
33.
Machado
,
M. R.
,
Fabro
,
A. T.
, and
Moura
,
B. B.
,
2019
, “
Flexural Waves Propagation in Piezoelectric Metamaterial Beam
,”
Proceedings of 15th International Conference on Dynamical Systems—Theory and Applications
, Lodz, Poland, Dec. 2–5.https://www.dys-ta.com/abs_view?pkey=agxzfmR5cy10YS1ocmRyEgsSBVBhcGVyGICAgLyknaAKDA
34.
IEEE
, 1988, “
Standard on Piezoelectricity
,” ANSI/IEEE, New York, Standard No. 176–1987.
35.
Leo
,
D.
,
2007
,
Engineering Analysis of Smart Material Systems
,
Wiley
,
Hoboken, NJ
.
36.
Hagood
,
N. W.
, and
von Flotow
,
A.
,
1991
, “
Damping of Structural Vibrations With Piezoelectric Materials and Passive Electrical Networks
,”
J. Sound Vib.
,
146
(
2
), pp.
243
268
.10.1016/0022-460X(91)90762-9
37.
Forward
,
R.
,
1979
, “
Electronic Damping of Vibrations in Optical Structures
,”
Appl. Opt.
,
18
(
5
), p.
690
.10.1364/AO.18.000690
38.
Wu
,
S.
,
1996
, “
Piezoelectric Shunts With a Parallel R-L Circuit for Structural Damping and Vibration Control
,”
Proc. SPIE
, 2720, pp.
259
269
.10.1117/12.239093
39.
Wu
,
S.
,
1998
, “
Method for Multiple Mode Shunt Damping OS Structural Vibration Using a Single PZT Transducer
,”
Proc. SPIE,
3327, pp.
159
168
.10.1117/12.310680
40.
Machado
,
M. R.
,
Appert
,
A.
, and
Khalij
,
L.
,
2019
, “
Spectral Formulated Modelling of an Electrodynamic Shaker
,”
Mech. Res. Commun.
,
97
, pp.
70
78
.10.1016/j.mechrescom.2019.04.014
41.
Van Belle
,
L.
,
Claeys
,
C.
,
Deckers
,
E.
, and
Desmet
,
W.
,
2017
, “
On the Impact of Damping on the Dispersion Curves of a Locally Resonant Metamaterial: Modelling and Experimental Validation
,”
J. Sound Vib.
,
409
, pp.
1
23
.10.1016/j.jsv.2017.07.045
You do not currently have access to this content.