A Lyapunov-based approach for calculating positive invariant sets in an automatic manner is presented. This is done using real algebraic geometry techniques, which are summed up under the term quantifier elimination (QE). Using available tools, the approach presented yields an algorithmizable procedure whose conservatism only depends on the initial choice for the Lyapunov candidate function. The performance of the approach is illustrated on a variant of the Rössler system and on the Lorenz-Haken system.
Issue Section:
Technical Brief
References
1.
Krishchenko
, A. P.
, and Starkov
, K. E.
, 2006
, “Localization of Compact Invariant Sets of the Lorenz System
,” Phys. Lett. A
, 353
(5
), pp. 383
–388
.2.
Li
, D.
, an Lu
, J.
, Wu
, X.
, and Chen
, G.
, 2005
, “Estimating the Bounds for the Lorenz Family of Chaotic Systems
,” Chaos, Solitons Fractals
, 23
(2
), pp. 529
–534
.3.
Leonov
, G. A.
, Bunin
, A. I.
, and Koksch
, N.
, 1987
, “Attractor Localization of the Lorenz System
,” ZAMM–J. Appl. Math. Mech.
, 67
(12
), pp. 649
–656
.4.
Zhang
, F.
, and Zhang
, G.
, 2016
, “Further Results on Ultimate Bound on the Trajectories of the Lorenz System
,” Qual. Theory Dyn. Syst.
, 15
(1
), pp. 221
–235
.5.
Pogromsky
, A. Y.
, Santoboni
, G.
, and Nijmeijer
, H.
, 2003
, “An Ultimate Bound on the Trajectories of the Lorenz System and Its Applications
,” Nonlinearity
, 16
(5
), pp. 1597
–1605
.6.
Röbenack
, K.
, Voßwinkel
, R.
, and Richter
, H.
, 2018
, “Automatic Generation of Bounds for Polynomial Systems With Application to the Lorenz System
,” Chaos, Solitons Fractals
, 113C
, pp. 25
–30
.7.
Collins
, G. E.
, 1975
, “Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decompostion
,” Second GI Conference on Automata Theory and Formal Languages, Kaiserslautern
, Germany, May 20–23, pp. 134
–183
.8.
Weispfenning
, V.
, 1988
, “The Complexity of Linear Problems in Fields
,” J. Symbolic Comput.
, 5
(1–2
), pp. 3
–27
.9.
Caviness
, B. F.
, and Johnson
, J. R.
, eds., 1998
, Quantifier Elimination and Cylindrical Algebraic Decomposition
, Springer-Verlag, Vienna
, Austria.10.
Hong
, H.
, Liska
, R.
, and Steinberg
, S.
, 1997
, “Testing Stability by Quantifier Elimination
,” J. Symbolic Comput.
, 24
(2
), pp. 161
–187
.11.
Nguyen
, T. V.
, Mori
, Y.
, Mori
, T.
, and Kuroe
, Y.
, 2003
, “QE Approach to Common Lyapunov Function Problem
,” J. Jpn. Soc. Symbolic Algebraic Comput.
, 10
(1
), pp. 52
–62
.http://www.jssac.net/Editor/Suushiki/V10/No1/V10N1_107.pdf12.
She
, Z.
, Xia
, B.
, Xiao
, R.
, and Zheng
, Z.
, 2009
, “A Semi-Algebraic Approach for Asymptotic Stability Analysis
,” Nonlinear Anal.: Hybrid Syst.
, 3
(4
), pp. 588
–596
.13.
Sturm
, T.
, and Tiwari
, A.
, 2011
, “Verification and Synthesis Using Real Quantifier Elimination
,” 36th International Symposium on Symbolic and Algebraic Computation
, San Jose, CA, June 8–11, pp. 329
–336
.http://www.csl.sri.com/users/tiwari/papers/issac2011.pdf14.
Jirstrand
, M.
, 1997
, “Nonlinear Control System Design by Quantifier Elimination
,” J. Symbolic Comput.
, 24
(2
), pp. 137
–152
.15.
Dorato
, P.
, 1998
, “Non-Fragile Controller Design: An Overview
,” American Control Conference (ACC)
, Philadelphia, PA, pp. 2829
–2831
.16.
Khalil
, H. K.
, 2002
, Nonlinear Systems
, 3rd ed., Prentice Hall
, Upper Saddle River, NJ
.17.
Leonov
, G. A.
, 2014
, “Rössler Systems: Estimates for the Dimension of Attractors and Homoclinic Orbits
,” Dokl. Math.
, 89
(3
), pp. 369
–371
.18.
Krishchenko
, A. P.
, 2005
, “Localization of Invariant Compact Sets of Dynamical Systems
,” Differ. Equations
, 41
(12
), pp. 1669
–1676
.19.
Basu
, S.
, Pollack
, R.
, and Roy
, M.-F.
, 2006
, Algorithms in Real Algebraic Geometry
, 2nd ed., Springer
, Berlin
.20.
Tarski
, A.
, 1948
, A Decision Method for an Elementary Algebra and Geometry
, Rand Corporation
, Santa Monica, CA, pp. 24–84.21.
Davenport
, J. H.
, and Heintz
, J.
, 1988
, “Real Quantifier Elimination Is Doubly Exponential
,” J. Symbolic Comput.
, 5
(1–2
), pp. 29
–35
.22.
Anai
, H.
, and Hara
, S.
, 2000
, “Fixed-Structure Robust Controller Synthesis Based on Sign Definite Condition by a Special Quantifier Elimination
,” American Control Conference
(ACC
), Chicago, IL, June 28–30, pp. 1312
–1316
.23.
Iwane
, H.
, Yanami
, H.
, Anai
, H.
, and Yokoyama
, K.
, 2013
, “An Effective Implementation of Symbolic-Numeric Cylindrical Algebraic Decomposition for Quantifier Elimination
,” Theor. Comput. Sci.
, 479
, pp. 43
–69
.24.
Yang
, L.
, R. Hou
, X.
, and B. Zeng
, Z.
, 1996
, “Complete Discrimination System for Polynomials
,” Sci. China, Ser. E: Technol. Sci.
, 39
(6
), pp. 628–646.25.
Košta
, M.
, 2016
, “New Concepts for Real Quantifier Elimination by Virtual Substitution
,” Ph.D. dissertation, Universität des Saarlandes, Fakultät für Mathematik und Informatik, Saarbrücken, Germany.26.
Gonzalez-Vega
, L.
, Lombardi
, H.
, Recio
, T.
, and Roy
, M.-F.
, 1989
, “Sturm-Habicht Sequence
,” ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Computation
, Portland, OR, July 17–19, pp. 136
–146
.27.
Collins
, G. E.
, and Hong
, H.
, 1991
, “Partial Cylindrical Algebraic Decomposition for Quantifier Elimination
,” J. Symbolic Comput.
, 12
(3
), pp. 299
–328
.28.
Brown
, C. W.
, 2003
, “QEPCAD B: A Program for Computing With Semi-Algebraic Sets Using CADs
,” ACM SIGSAM Bull.
, 37
(4
), pp. 97
–108
.29.
Dolzmann
, A.
, and Sturn
, T.
, 1997
, “Redlog: Computer Algebra Meets Computer Logic
,” ACM SIGSAM Bull.
, 31
(2
), pp. 2
–9
.30.
Brown
, C. W.
, and Gross
, C.
, 2006
, Efficient Preprocessing Methods for Quantifier Elimination
(Lecture Notes in Computer Science, Vol. 4194
), Springer
, Berlin, pp. 89
–100
.31.
Chen
, C.
, and Maza
, M. M.
, 2016
, “Quantifier Elimination by Cylindrical Algebraic Decomposition Based on Regular Chains
,” J. Symbolic Comput.
, 75
, pp. 74
–93
.32.
Awrejcewicz
, J.
, Krysko
, A.
, Erofeev
, N.
, Dobriyan
, V.
, Barulina
, M.
, and Krysko
, V.
, 2018
, “Quantifying Chaos by Various Computational Methods—Part 1: Simple Systems
,” Entropy
, 20
(3
), p. 175
.33.
Awrejcewicz
, J.
, Krysko
, A.
, Erofeev
, N.
, Dobriyan
, V.
, Barulina
, M.
, and Krysko
, V.
, 2018
, “Quantifying Chaos by Various Computational Methods—Part 2: Vibrations of the Bernoulli–Euler Beam Subjected to Periodic and Colored Noise
,” Entropy
, 20
(3
), p. 170
.34.
Rössler
, O. E.
, 1979
, “Continuous Chaos—Four Prototype Equations
,” Ann. N. Y. Acad. Sci.
, 316
(1
), pp. 376
–392
.35.
Ning
, C.-Z.
, and Haken
, H.
, 1990
, “Detuned Lasers and the Complex Lorenz Equations: Subcritical and Supercritical Hopf Bifurcations
,” Phys. Rev. A
, 41
(7
), pp. 3826
–3837
.36.
Li
, D.
, Wu
, X.
, and Lu
, J.
, 2009
, “Estimating the Ultimate Bound and Positively Invariant Set for the Hyperchaotic Lorenz-Haken System
,” Chaos, Solitons Fractals
, 39
(3
), pp. 1290
–1296
.37.
Zehrour
, O.
, and Elhadj
, Z.
, 2012
, “Boundedness of the Generalized 4-D Hyperchaotic Model Containing Lorenz-Stenflo and Lorenz-Haken Systems
,” Nonlinear Stud.
, 19
(4
), pp. 607
–613
.http://nonlinearstudies.com/index.php/nonlinear/article/view/681Copyright © 2019 by ASME
You do not currently have access to this content.