Abstract

Pelvic organ prolapse (POP) is the herniation of the pelvic organs into the vaginal space, resulting in the feeling of a bulge and organ dysfunction. Treatment of POP often involves repositioning the organs using a polypropylene mesh, which has recently been found to have relatively high rates of complications. Complications have been shown to be related to stiffness mismatches between the vagina and polypropylene, and unstable knit patterns resulting in mesh deformations with mechanical loading. To overcome these limitations, we have three-dimensional (3D)-printed a porous, monofilament membrane composed of relatively soft polycarbonate-urethane (PCU) with a stable geometry. PCU was chosen for its tunable properties as it is comprised of both hard and soft segments. The bulk mechanical properties of PCU were first characterized by testing dogbone samples, demonstrating the dependence of PCU mechanical properties on its measurement environment and the effect of print pathing. The pore dimensions and load-relative elongation response of the 3D-printed PCU membranes under monotonic tensile loading were then characterized. Finally, a fatigue study was performed on the 3D-printed membrane to evaluate durability, showing a similar fatigue resistance with a commercial synthetic mesh and hence its potential as a replacement.

References

1.
American Urogynecologic, Society
,
2019
, “
Pelvic Organ Prolapse
,”
Female Pelvic Med. Reconstr. Surg.
,
25
, pp.
397
408
.10.1097/SPV.0000000000000794
2.
Jelovsek
,
J. E.
,
Barber
,
M. D.
,
Brubaker
,
L.
,
Norton
,
P.
,
Gantz
,
M.
,
Richter
,
H. E.
,
Weidner
,
A.
,
Menefee
,
S.
,
Schaffer
,
J.
,
Pugh
,
N.
, and
Meikle
,
S.
,
for the NICHD Pelvic Floor Disorders Network,
2018
, “
Effect of Uterosacral Ligament Suspension versus Sacrospinous Ligament Fixation With or Without Perioperative Behavioral Therapy for Pelvic Organ Vaginal Prolapse on Surgical Outcomes and Prolapse Symptoms at 5 Years in the OPTIMAL Randomized Clinical Trial
,”
JAMA
,
319
(
15
), pp.
1554
1565
.10.1001/jama.2018.2827
3.
Chen
,
C. C. G.
,
Ridgeway
,
B.
, and
Paraiso
,
M. F. R.
,
2007
, “
Biologic Grafts and Synthetic Meshes in Pelvic Reconstructive Surgery
,”
Clin. Obstet. Gynecol.
,
50
(
2
), pp.
383
411
.10.1097/GRF.0b013e31804b184c
4.
Dietz
,
H. P.
,
Vancaillie
,
P.
,
Svehla
,
M.
,
Walsh
,
W.
,
Steensma
,
A. B.
, and
Vancaillie
,
T. G.
,
2003
, “
Mechanical Properties of Urogynecologic Implant Materials
,”
Int. Urogynecol. J.
, 14, pp.
239
243
.10.1007/s00192-003-1041-8
5.
Liang
,
R.
,
Abramowitch
,
S.
,
Knight
,
K.
,
Palcsey
,
S.
,
Nolfi
,
A.
,
Feola
,
A.
,
Stein
,
S.
, and
Moalli
,
P. A.
,
2013
, “
Vaginal Degeneration Following Implantation of Synthetic Mesh With Increased Stiffness
,”
BJOG Int. J. Obstet. Gynaecol.
,
120
(
2
), pp.
233
243
.10.1111/1471-0528.12085
6.
Feola
,
A.
,
Barone
,
W.
,
Moalli
,
P.
, and
Abramowitch
,
S.
,
2013
, “
Characterizing the Ex Vivo Textile and Structural Properties of Synthetic Prolapse Mesh Products
,”
Int. Urogynecol. J.
,
24
(
4
), pp.
559
564
.10.1007/s00192-012-1901-1
7.
Deffieux
,
X.
,
de Tayrac
,
R.
,
Huel
,
C.
,
Bottero
,
J.
,
Gervaise
,
A.
,
Bonnet
,
K.
,
Frydman
,
R.
, and
Fernandez
,
H.
,
2007
, “
Vaginal Mesh Erosion After Transvaginal Repair of Cystocele Using Gynemesh or Gynemesh-Soft in 138 Women: A Comparative Study
,”
Int. Urogynecol. J.
,
18
(
1
), pp.
73
79
.10.1007/s0192-005-0041-2
8.
Orenstein
,
S. B.
,
Saberski
,
E. R.
,
Kreutzer
,
D. L.
, and
Novitsky
,
Y. W.
,
2012
, “
Comparative Analysis of Histopathologic Effects of Synthetic Meshes Based on Material, Weight, and Pore Size in Mice
,”
J. Surg. Res.
,
176
(
2
), pp.
423
429
.10.1016/j.jss.2011.09.031
9.
Barone
,
W. R.
,
Moalli
,
P. A.
, and
Abramowitch
,
S. D.
,
2016
, “
Textile Properties of Synthetic Prolapse Mesh in Response to Uniaxial Loading
,”
Am. J. Obstet. Gynecol.
,
215
(
3
), pp.
326.e1
326.e9
.10.1016/j.ajog.2016.03.023
10.
Otto
,
J.
,
Kaldenhoff
,
E.
,
Kirschner‐Hermanns
,
R.
,
Mühl
,
T.
, and
Klinge
,
U.
,
2014
, “
Elongation of Textile Pelvic Floor Implants Under Load is Related to Complete Loss of Effective Porosity, Thereby Favoring Incorporation in Scar Plates
,”
J. Biomed. Mater. Res. A
,
102
(
4
), pp.
1079
1084
.10.1002/jbm.a.34767
11.
Knight
,
K. M.
,
Moalli
,
P. A.
, and
Abramowitch
,
S. D.
,
2018
, “
Preventing Mesh Pore Collapse by Designing Mesh Pores With Auxetic Geometries: A Comprehensive Evaluation Via Computational Modeling
,”
ASME J. Biomech. Eng.
,
140
(
5
), p.
051005
.10.1115/1.4039058
12.
Davila
,
G. W.
, and
Jijon
,
A.
,
2012
, “
Managing Vaginal Mesh Exposure/Erosions
,”
Curr. Opin. Obstet. Gynecol.
,
24
(
5
), pp.
343
348
.10.1097/GCO.0b013e328357a1c5
13.
Zimkowski
,
M. M.
,
Rentschler
,
M. E.
,
Schoen
,
J. A.
,
Mandava
,
N.
, and
Shandas
,
R.
,
2014
, “
Biocompatibility and Tissue Integration of a Novel Shape Memory Surgical Mesh for Ventral Hernia: In Vivo Animal Studies
,”
J. Biomed. Mater. Res. B Appl. Biomater.
,
102
(
5
), pp.
1093
1100
.10.1002/jbm.b.33091
14.
Baah-Dwomoh
,
A.
,
McGuire
,
J.
,
Tan
,
T.
, and
De Vita
,
R.
,
2016
, “
Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge
,”
ASME Appl. Mech. Rev.
,
68
(
6
), p.
060801
.10.1115/1.4034442
15.
Goh
,
J. T. W.
,
2002
, “
Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women
,”
Int. Urogynecol. J. Pelvic Floor Dysfunct.
,
13
(
2
), pp.
76
79
(discussion 79).10.1007/s001920200019
16.
Knight
,
K. M.
,
Moalli
,
P. A.
,
Nolfi
,
A.
,
Palcsey
,
S.
,
Barone
,
W. R.
, and
Abramowitch
,
S. D.
,
2016
, “
Impact of Parity on Ewe Vaginal Mechanical Properties Relative to the Nonhuman Primate and Rodent
,”
Int. Urogynecol. J.
,
27
(
8
), pp.
1255
1263
.10.1007/s00192-016-2963-2
17.
Lei
,
L.
,
Song
,
Y.
, and
Chen
,
R.
,
2007
, “
Biomechanical Properties of Prolapsed Vaginal Tissue in Pre- and Postmenopausal Women
,”
Int. Urogynecol. J. Pelvic Floor Dysfunct.
,
18
(
6
), pp.
603
607
.10.1007/s00192-006-0214-7
18.
Muthuswamy
,
J.
,
Saha
,
R.
, and
Gilletti
,
A.
,
2005
, “
Tissue Micromotion Induced Stress Around Brain Implants
,”
Third IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology
, Oahu, HI, May 12–15, pp.
102
103
.10.1109/MMB.2005.1548395
19.
Sridharan
,
A.
,
Nguyen
,
J. K.
,
Capadona
,
J. R.
, and
Muthuswamy
,
J.
,
2015
, “
Compliant Intracortical Implants Reduce Strains and Strain Rates in Brain Tissue In Vivo
,”
J. Neural Eng.
,
12
(
3
), p.
036002
.10.1088/1741-2560/12/3/036002
20.
Huiskes
,
R.
,
Weinans
,
H.
, and
van Rietbergen
,
B.
,
1992
, “
The Relationship Between Stress Shielding and Bone Resorption Around Total Hip Stems and the Effects of Flexible Materials
,”
Clin. Orthop.
, 274, pp.
124
134
.https://pubmed.ncbi.nlm.nih.gov/1728998/
21.
Ulrich
,
D.
,
Edwards
,
S. L.
,
White
,
J. F.
,
Supit
,
T.
,
Ramshaw
,
J. A. M.
,
Lo
,
C.
,
Rosamilia
,
A.
,
Werkmeister
,
J. A.
, and
Gargett
,
C. E.
,
2012
, “
A Preclinical Evaluation of Alternative Synthetic Biomaterials for Fascial Defect Repair Using a Rat Abdominal Hernia Model
,”
PLoS One
,
7
(
11
), p.
e50044
.10.1371/journal.pone.0050044
22.
Hympánová
,
L.
,
Rynkevic
,
R.
,
Román
,
S.
,
Mori da Cunha
,
M. G.
,
Mazza
,
E.
,
Zündel
,
M.
,
Urbánková
,
I.
,
Gallego
,
M. R.
,
Vange
,
J.
,
Callewaert
,
G.
,
Chapple
,
C.
,
MacNeil
,
S.
, and
Deprest
,
J.
,
2020
, “
Assessment of Electrospun and Ultra-Lightweight Polypropylene Meshes in the Sheep Model for Vaginal Surgery
,”
Eur. Urol. Focus
,
6
(
1
), pp.
190
198
.10.1016/j.euf.2018.07.024
23.
Roman
,
S.
,
Mangir
,
N.
,
Bissoli
,
J.
,
Chapple
,
C. R.
, and
MacNeil
,
S.
,
2016
, “
Biodegradable Scaffolds Designed to Mimic Fascia-Like Properties for the Treatment of Pelvic Organ Prolapse and Stress Urinary Incontinence
,”
J. Biomater. Appl.
,
30
(
10
), pp.
1578
1588
.10.1177/0885328216633373
24.
Bickhaus
,
J. A.
,
Fraser
,
M. O.
,
Weidner
,
A. C.
,
Jayes
,
F. L.
,
Amundsen
,
C. L.
,
Gall
,
K.
,
Miller
,
A. T.
,
Marini
,
F. C.
,
Robboy
,
S. J.
, and
Siddiqui
,
N. Y.
,
2021
, “
Polycarbonate Urethane Mesh: A New Material for Pelvic Reconstruction
,”
Female Pelvic Med. Reconstr. Surg.
,
27
(
2
), pp.
e469
e475
.10.1097/SPV.0000000000000964
25.
Shemesh
,
M.
,
Asher
,
R.
,
Zylberberg
,
E.
,
Guilak
,
F.
,
Linder-Ganz
,
E.
, and
Elsner
,
J. J.
,
2014
, “
Viscoelastic Properties of a Synthetic Meniscus Implant
,”
J. Mech. Behav. Biomed. Mater.
,
29
, pp.
42
55
.10.1016/j.jmbbm.2013.08.021
26.
Elsner
,
J.
,
Condello
,
V.
,
Zorzi
,
C.
,
Verdonk
,
P.
,
Arbel
,
R.
,
Hershman
,
E.
,
Guilak
,
F.
,
Shterling
,
A.
,
Linder-Ganz
,
E.
, and
Nocco
,
E.
,
2012
, “
A Novel Polycarbonate-Urethane Meniscal Implant: From Bench to First Clinical Experience
,”
Orthop. Proc.
,
94-B
, pp.
125
125
.10.1302/1358-992X.94BSUPP_XL.ISTA2011-125
27.
Miller
,
A. T.
,
Safranski
,
D. L.
,
Smith
,
K. E.
,
Guldberg
,
R. E.
, and
Gall
,
K.
,
2016
, “
Compressive Cyclic Ratcheting and Fatigue of Synthetic, Soft Biomedical Polymers in Solution
,”
J. Mech. Behav. Biomed. Mater.
,
54
, pp.
268
282
.10.1016/j.jmbbm.2015.09.034
28.
Miller
,
A. T.
,
Safranski
,
D. L.
,
Smith
,
K. E.
,
Sycks
,
D. G.
,
Guldberg
,
R. E.
, and
Gall
,
K.
,
2017
, “
Fatigue of Injection Molded and 3D Printed Polycarbonate Urethane in Solution
,”
Polymers
,
108
, pp.
121
134
.10.1016/j.polymer.2016.11.055
29.
Hepburn
,
C.
,
2012
,
Polyurethane Elastomers
,
Springer Science & Business Media
, Berlin.
30.
Velayudhan
,
S.
,
Martin
,
D.
, and
Cooper-White
,
J.
,
2009
, “
Evaluation of Dynamic Creep Properties of Surgical Mesh Prostheses–Uniaxial Fatigue
,”
J. Biomed. Mater. Res. B Appl. Biomater.
,
91B
(
1
), pp.
287
296
.10.1002/jbm.b.31401
31.
Taniguchi
,
N.
,
Fujibayashi
,
S.
,
Takemoto
,
M.
,
Sasaki
,
K.
,
Otsuki
,
B.
,
Nakamura
,
T.
,
Matsushita
,
T.
,
Kokubo
,
T.
, and
Matsuda
,
S.
,
2016
, “
Effect of Pore Size on Bone Ingrowth Into Porous Titanium Implants Fabricated by Additive Manufacturing: An In Vivo Experiment
,”
Mater. Sci. Eng. C
,
59
, pp.
690
701
.10.1016/j.msec.2015.10.069
32.
Loh
,
Q. L.
, and
Choong
,
C.
,
2013
, “
Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size
,”
Tissue Eng. Part B Rev
,
19
(
6
), pp.
485
502
.10.1089/ten.teb.2012.0437
33.
Safai
,
L.
,
Cuellar
,
J. S.
,
Smit
,
G.
, and
Zadpoor
,
A. A.
,
2019
, “
A Review of the Fatigue Behavior of 3D Printed Polymers
,”
Addit. Manuf.
,
28
, pp.
87
97
.10.1016/j.addma.2019.03.023
34.
Shanmugam
,
V.
,
Das
,
O.
,
Babu
,
K.
,
Marimuthu
,
U.
,
Veerasimman
,
A.
,
Johnson
,
D. J.
,
Neisiany
,
R. E.
,
Hedenqvist
,
M. S.
,
Ramakrishna
,
S.
, and
Berto
,
F.
,
2021
, “
Fatigue Behaviour of FDM-3D Printed Polymers, Polymeric Composites and Architected Cellular Materials
,”
Int. J. Fatigue
,
143
, p.
106007
.10.1016/j.ijfatigue.2020.106007
35.
Benedetti
,
M.
,
Du Plessis
,
A.
,
Ritchie
,
R. O.
,
Dallago
,
M.
,
Razavi
,
S. M. J.
, and
Berto
,
F.
,
2021
, “
Architected Cellular Materials: A Review on Their Mechanical Properties Towards Fatigue-Tolerant Design and Fabrication
,”
Mater. Sci. Eng. R Rep.
,
144
, p.
100606
.10.1016/j.mser.2021.100606
36.
Geary
,
C.
,
Birkinshaw
,
C.
, and
Jones
,
E.
,
2008
, “
Characterisation of Bionate Polycarbonate Polyurethanes for Orthopaedic Applications
,”
J. Mater. Sci. Mater. Med.
,
19
(
11
), pp.
3355
3363
.10.1007/s10856-008-3472-8
37.
Dawoud
,
M.
,
Taha
,
I.
, and
Ebeid
,
S. J.
,
2016
, “
Mechanical Behaviour of ABS: An Experimental Study Using FDM and Injection Moulding Techniques
,”
J. Manuf. Process
,
21
, pp.
39
45
.10.1016/j.jmapro.2015.11.002
38.
Durgun
,
I.
, and
Ertan
,
R.
,
2014
, “
Experimental Investigation of FDM Process for Improvement of Mechanical Properties and Production Cost
,”
Rapid Prototyp. J.
,
20
(
3
), pp.
228
235
.10.1108/RPJ-10-2012-0091
39.
Haryńska
,
A.
,
Carayon
,
I.
,
Kosmela
,
P.
,
Szeliski
,
K.
,
Łapiński
,
M.
,
Pokrywczyńska
,
M.
,
Kucińska-Lipka
,
J.
, and
Janik
,
H.
,
2020
, “
A Comprehensive Evaluation of Flexible FDM/FFF 3D Printing Filament as a Potential Material in Medical Application
,”
Eur. Polym. J.
,
138
, p.
109958
.10.1016/j.eurpolymj.2020.109958
40.
Srinivas
,
V.
,
van Hooy-Corstjens
,
C. S. J.
, and
Harings
,
J. A. W.
,
2018
, “
Correlating Molecular and Crystallization Dynamics to Macroscopic Fusion and Thermodynamic Stability in Fused Deposition Modeling; a Model Study on Polylactides
,”
Polymers
,
142
, pp.
348
355
.10.1016/j.polymer.2018.03.063
41.
McIlroy
,
C.
, and
Graham
,
R. S.
,
2018
, “
Modelling Flow-Enhanced Crystallisation During Fused Filament Fabrication of Semi-Crystalline Polymer Melts
,”
Addit. Manuf.
,
24
, pp.
323
340
.10.1016/j.addma.2018.10.018
42.
McIlroy
,
C.
, and
Olmsted
,
P. D.
,
2017
, “
Disentanglement Effects on Welding Behaviour of Polymer Melts During the Fused-Filament-Fabrication Method for Additive Manufacturing
,”
Polym.
,
123
, pp.
376
391
.10.1016/j.polymer.2017.06.051
43.
Takano
,
M.
, and
Nielsen
,
L. E.
,
1976
, “
The Notch Sensitivity of Polymeric Materials
,”
J. Appl. Polym. Sci.
,
20
(
8
), pp.
2193
2207
.10.1002/app.1976.070200814
44.
Balazs
,
C. F.
,
1964
, “
Mechanical Design and Notch Sensitivity of Molding Materials
,” Defense Technical Information Center, Fort Belvoir, VA, accessed May 11, 2023, https://apps.dtic.mil/sti/citations/ADA310415
45.
Rayneau-Kirkhope
,
D.
,
2018
, “
Stiff Auxetics: Hierarchy as a Route to Stiff, Strong Lattice Based Auxetic Meta-Materials
,”
Sci. Rep.
,
8
(
1
), p.
12437
.10.1038/s41598-018-30822-x
46.
Bauer
,
J.
,
Meza
,
L. R.
,
Schaedler
,
T. A.
,
Schwaiger
,
R.
,
Zheng
,
X.
, and
Valdevit
,
L.
,
2017
, “
Nanolattices: An Emerging Class of Mechanical Metamaterials
,”
Adv. Mater.
,
29
(
40
), p.
1701850
.10.1002/adma.201701850
47.
Knight
,
K.
,
2017
, “
Development and Evaluation of Auxetic Meshes for Pelvic Organ Prolapse Repair
,” D-Scholarship@Pitt, University of Pittsburgh, Pittsburgh, PA, accessed May 11, 2023, http://d-scholarship.pitt.edu/31308/
48.
Ziemian
,
S.
,
Okwara
,
M.
, and
Ziemian
,
C. W.
,
2015
, “
Tensile and Fatigue Behavior of Layered Acrylonitrile Butadiene Styrene
,”
Rapid Prototyp. J.
,
21
(
3
), pp.
270
278
.10.1108/RPJ-09-2013-0086
49.
Xi
,
C.
,
Kang
,
G.
,
Lu
,
F.
,
Zhang
,
J.
, and
Jiang
,
H.
,
2015
, “
An Experimental Study on Uniaxial Ratcheting of Polycarbonate Polymers With Different Molecular Weights
,”
Mater. Des.
,
67
, pp.
644
648
.10.1016/j.matdes.2014.11.015
50.
Paul
,
S. K.
,
2019
, “
A Critical Review of Experimental Aspects in Ratcheting Fatigue: Microstructure to Specimen to Component
,”
J. Mater. Res. Technol.
,
8
(
5
), pp.
4894
4914
.10.1016/j.jmrt.2019.06.014
51.
Bowman
,
J.
, and
Barker
,
M. B.
,
1986
, “
A Methodology for Describing Creep-Fatigue Interactions in Thermoplastic Components
,”
Polym. Eng. Sci.
,
26
(
22
), pp.
1582
1590
.10.1002/pen.760262209
52.
Eftekhari
,
M.
, and
Fatemi
,
A.
,
2016
, “
Creep-Fatigue Interaction and Thermo-Mechanical Fatigue Behaviors of Thermoplastics and Their Composites
,”
Int. J. Fatigue
,
91
, pp.
136
148
.10.1016/j.ijfatigue.2016.05.031
53.
Drozdov
,
A. D.
,
2013
, “
Mechanical Response of Polypropylene Under Multiple-Step Loading
,”
Int. J. Solids Struct.
,
50
(
5
), pp.
815
823
.10.1016/j.ijsolstr.2012.11.014
54.
Ford
,
A. C.
,
Gramling
,
H.
,
Li
,
S. C.
,
Sov
,
J. V.
,
Srinivasan
,
A.
, and
Pruitt
,
L. A.
,
2018
, “
Micromechanisms of Fatigue Crack Growth in Polycarbonate Polyurethane: Time Dependent and Hydration Effects
,”
J. Mech. Behav. Biomed. Mater.
,
79
, pp.
324
331
.10.1016/j.jmbbm.2018.01.008
55.
Scetta
,
G.
,
Ju
,
J.
,
Selles
,
N.
,
Heuillet
,
P.
,
Ciccotti
,
M.
, and
Creton
,
C.
,
2021
, “
Strain Induced Strengthening of Soft Thermoplastic Polyurethanes Under Cyclic Deformation
,”
J. Polym. Sci.
,
59
(
8
), pp.
685
696
.10.1002/pol.20210060
56.
Sahoo
,
S.
,
DeLozier
,
K. R.
,
Erdemir
,
A.
, and
Derwin
,
K. A.
,
2015
, “
Clinically Relevant Mechanical Testing of Hernia Graft Constructs
,”
J. Mech. Behav. Biomed. Mater.
,
41
, pp.
177
188
.10.1016/j.jmbbm.2014.10.011
You do not currently have access to this content.