Abstract

Accurately capturing the bone and cartilage morphology and generating a mesh remains a critical step in the workflow of computational knee joint modeling. Currently, there is no standardized method to compare meshes of different element types and nodal densities, making comparisons across research teams a significant challenge. The aim of this paper is to describe a method to quantify differences in knee joint bone and cartilages meshes, independent of bone and cartilage mesh topology. Bone mesh-to-mesh distances, subchondral bone boundaries, and cartilage thicknesses from meshes of any type of mesh are obtained using a series of steps involving registration, resampling, and radial basis function fitting after which the comparisons are performed. Subchondral bone boundaries and cartilage thicknesses are calculated and visualized in a common frame of reference for comparison. The established method is applied to models developed by five modeling teams. Our approach to obtain bone mesh-to-mesh distances decreased the divergence seen in selecting a reference mesh (i.e., comparing mesh A-to-B versus mesh B-to-A). In general, the bone morphology was similar across teams. The cartilage thicknesses for all models were calculated and the mean absolute cartilage thickness difference was presented, the articulating areas had the best agreement across teams. The teams showed disagreement on the subchondral bone boundaries. The method presented in this paper allows for objective comparisons of bone and cartilage geometry that is agnostic to mesh type and nodal density.

References

1.
Erdemir
,
A.
,
Besier
,
T. F.
,
Halloran
,
J. P.
,
Imhauser
,
C. W.
,
Laz
,
P. J.
,
Morrison
,
T. M.
, and
Shelburne
,
K. B.
,
2019
, “
Deciphering the “Art” in Modeling and Simulation of the Knee Joint: Overall Strategy
,”
ASME J. Biomech. Eng.
,
141
(
7
), p. 071002.10.1115/1.4043346
2.
Anderson
,
A. E.
,
Ellis
,
B. J.
,
Maas
,
S. A.
, and
Weiss
,
J. A.
,
2010
, “
Effects of Idealized Joint Geometry on Finite Element Predictions of Cartilage Contact Stresses in the Hip
,”
J. Biomech.
,
43
(
7
), pp.
1351
1357
.10.1016/j.jbiomech.2010.01.010
3.
Godest
,
A. C.
,
Beaugonin
,
M.
,
Haug
,
E.
,
Taylor
,
M.
, and
Gregson
,
P. J.
,
2002
, “
Simulation of a Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis
,”
J. Biomech.
,
35
(
2
), pp.
267
275
.10.1016/S0021-9290(01)00179-8
4.
Halloran
,
J. P.
,
Easley
,
S. K.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
,
2005
, “
Comparison of Deformable and Elastic Foundation Finite Element Simulations for Predicting Knee Replacement Mechanics
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
813
818
.10.1115/1.1992522
5.
Li
,
Z.
,
Kindig
,
M. W.
,
Subit
,
D.
, and
Kent
,
R. W.
,
2010
, “
Influence of Mesh Density, Cortical Thickness and Material Properties on Human Rib Fracture Prediction
,”
Med. Eng. Phys.
,
32
(
9
), pp.
998
1008
.10.1016/j.medengphy.2010.06.015
6.
Ramos
,
A.
, and
Simoes
,
J. A.
,
2006
, “
Tetrahedral Versus Hexahedral Finite Elements in Numerical Modelling of the Proximal Femur
,”
Med. Eng. Phys.
,
28
(
9
), pp.
916
924
.10.1016/j.medengphy.2005.12.006
7.
Rooks
,
N. B.
,
Schneider
,
M. T. Y.
,
Erdemir
,
A.
,
Halloran
,
J. P.
,
Laz
,
P. J.
,
Shelburne
,
K. B.
,
Hume
,
D. R.
,
Imhauser
,
C. W.
,
Zaylor
,
W.
,
Elmasry
,
S.
,
Schwartz
,
A.
,
Chokhandre
,
S. K.
,
Abdollahi
,
N.
, and
Besier
,
T. F.
,
2021
, “
Deciphering the “Art” in Modeling and Simulation of the Knee Joint: Variations in Model Development
,”
ASME J. Biomech. Eng.
,
143
(
6
), p.
061002
.10.1115/1.4050028
8.
Taylor
,
M.
,
Bryan
,
R.
, and
Galloway
,
F.
,
2013
, “
Accounting for Patient Variability in Finite Element Analysis of the Intact and Implanted Hip and Knee: A Review
,”
Int. J. Numer. Method. Biomed. Eng.
,
29
(
2
), pp.
273
292
.10.1002/cnm.2530
9.
Baldwin
,
M. A.
,
Langenderfer
,
J. E.
,
Rullkoetter
,
P. J.
, and
Laz
,
P. J.
,
2010
, “
Development of Subject-Specific and Statistical Shape Models of the Knee Using an Efficient Segmentation and Mesh-Morphing Approach
,”
Comput. Meth. Prog. Bio.
,
97
(
3
), pp.
232
240
.10.1016/j.cmpb.2009.07.005
10.
Alam
,
F.
, and
Rahman
,
S. U.
,
2019
, “
Challenges and Solutions in Multimodal Medical Image Subregion Detection and Registration
,”
J. Med. Imag. Radiat. Sci.
,
50
(
1
), pp.
24
30
.10.1016/j.jmir.2018.06.001
11.
Karell
,
M. A.
,
Langstaff
,
H. K.
,
Halazonetis
,
D. J.
,
Minghetti
,
C.
,
Frelat
,
M.
, and
Kranioti
,
E. F.
,
2016
, “
A Novel Method for Pair-Matching Using Three-Dimensional Digital Models of Bone: Mesh-to-Mesh Value Comparison
,”
Int. J. Legal Med.
,
130
(
5
), pp.
1315
1322
.10.1007/s00414-016-1334-3
12.
Zhang
,
J.
,
Ackland
,
D.
, and
Fernandez
,
J.
,
2018
, “
Point-Cloud Registration Using Adaptive Radial Basis Functions
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
7
), pp.
498
502
.10.1080/10255842.2018.1484914
13.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
,
Peterson
,
P.
,
Weckesser
,
W.
,
Bright
,
J.
,
van der Walt
,
S. J.
,
Brett
,
M.
,
Wilson
,
J.
,
Millman
,
K. J.
,
Mayorov
,
N.
,
Nelson
,
A. R. J.
,
Jones
,
E.
,
Kern
,
R.
,
Larson
,
E.
,
Carey
,
C. J.
,
Polat
,
İ.
,
Feng
,
Y.
,
Moore
,
E. W.
,
VanderPlas
,
J.
,
Laxalde
,
D.
,
Perktold
,
J.
,
Cimrman
,
R.
,
Henriksen
,
I.
,
Quintero
,
E. A.
,
Harris
,
C. R.
,
Archibald
,
A. M.
,
Ribeiro
,
A. H.
,
Pedregosa
,
F.
, and
van Mulbregt
,
P.
, &
SciPy 1.0 Contributors
,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
14.
Ateshian
,
G. A.
, and
Hung
,
C. T.
,
2005
, “
Patellofemoral Joint Biomechanics and Tissue Engineering
,”
Clin. Orthop. Relat. Res.
,
436
, pp.
81
90
.10.1097/01.blo.0000171542.53342.46
15.
Bingham
,
J. T.
,
Papannagari
,
R.
,
Van De Velde
,
S. K.
,
Gross
,
C.
,
Gill
,
T. J.
,
Felson
,
D. T.
,
Rubash
,
H. E.
, and
Li
,
G.
,
2008
, “
In Vivo Cartilage Contact Deformation in the Healthy Human Tibiofemoral Joint
,”
Rheumatology
,
47
(
11
), pp.
1622
1627
.10.1093/rheumatology/ken345
16.
Draper
,
C. E.
,
Besier
,
T. F.
,
Gold
,
G. E.
,
Fredericson
,
M.
,
Fiene
,
A.
,
Beaupré
,
G. S.
, and
Delp
,
S. L.
,
2006
, “
Is Cartilage Thickness Different in Young Subjects With and Without Patellofemoral Pain?
,”
Osteoarthr. Cartil.
,
14
(
9
), pp.
931
937
.10.1016/j.joca.2006.03.006
17.
Owusu-Akyaw
,
K. A.
,
Heckelman
,
L. N.
,
Cutcliffe
,
H. C.
,
Sutter
,
E. G.
,
Englander
,
Z. A.
,
Spritzer
,
C. E.
,
Garrett
,
W. E.
, and
DeFrate
,
L. E.
,
2018
, “
A Comparison of Patellofemoral Cartilage Morphology and Deformation in Anterior Cruciate Ligament Deficient Versus Uninjured Knees
,”
J. Biomech.
,
67
, pp.
78
83
.10.1016/j.jbiomech.2017.11.019
18.
Akbarshahi
,
M.
,
Schache
,
A. G.
,
Fernandez
,
J. W.
,
Baker
,
R.
,
Banks
,
S.
, and
Pandy
,
M. G.
,
2010
, “
Non-Invasive Assessment of Soft-Tissue Artifact and Its Effect on Knee Joint Kinematics During Functional Activity
,”
J. Biomech.
,
43
(
7
), pp.
1292
1301
.10.1016/j.jbiomech.2010.01.002
19.
Derrick
,
T. R.
,
van den Bogert
,
A. J.
,
Cereatti
,
A.
,
Dumas
,
R.
,
Fantozzi
,
S.
, and
Leardini
,
A.
,
2020
, “
ISB Recommendations on the Reporting of Intersegmental Forces and Moments During Human Motion Analysis
,”
J. Biomech.
,
99
, p.
109533
.10.1016/j.jbiomech.2019.109533
You do not currently have access to this content.