Abstract

Sickle cell disease (SCD) is a genetic condition characterized by an abundance of sickle hemoglobin in red blood cells. SCD patients are more prone to intracranial aneurysms (ICA) compared to the general population, with distinctive features such as multiple intracranial aneurysms: 66% of SCD patients with ICAs have multiples ICAs, compared to 20% in nonsickle patients. The exact mechanism behind these associations is not fully understood, but there is a hypothesized link between hypoxic conditions in blood vessels and impaired synthesis of extracellular matrix, which may weaken the vessel walls, favoring aneurysm formation and rupture. SCD patients experience reduced oxygen levels in their blood, potentially exacerbating hypoxia in intracranial aneurysms, and potentially creating a feedback loop that could contribute to aneurysm development and early onset in these patients. In this work, we performed a series of computational studies (Fluent) using idealized geometries to investigate the key differences in the oxygen transport and blood flow dynamics inside an aneurysm formation for sickle and nonsickle cases. We found that using sickle cell disease parameters resulted in a 14% to 68% reduction in blood flow and a 37% to 70% reduction in oxygen availability within the aneurysm, depending on the vessel curvature and the aneurysm throat diameter, due to factors including oxygen-dependent viscosity and alteration in the oxygen transport. The results indicate that depending on geometry and flow characteristics, some degree of hypoxia maybe present in aneurysm bulb and would be more severe in sickle-cell disease patients. This study hopes to bring into attention the potential presence of hypoxic environment in the aneurysm bulb.

References

1.
Connes
,
P.
,
Alexy
,
T.
,
Detterich
,
J.
,
Romana
,
M.
,
Hardy-Dessources
,
M.-D.
, and
Ballas
,
S. K.
,
2016
, “
The Role of Blood Rheology in Sickle Cell Disease
,”
Blood Rev.
,
30
(
2
), pp.
111
118
.10.1016/j.blre.2015.08.005
2.
Szafraniec
,
H. M.
,
Valdez
,
J. M.
,
Iffrig
,
E.
,
Lam
,
W. A.
,
Higgins
,
J. M.
,
Pearce
,
P.
, and
Wood
,
D. K.
,
2022
, “
Feature Tracking Microfluidic Analysis Reveals Differential Roles of Viscosity and Friction in Sickle Cell Blood
,”
Lab Chip
,
22
(
8
), pp.
1565
1575
.10.1039/D1LC01133B
3.
Piel
,
F. B.
,
Steinberg
,
M. H.
, and
Rees
,
D. C.
,
2017
, “
Sickle Cell Disease
,”
New Engl. J. Med.
,
376
(
16
), pp.
1561
1573
.10.1056/NEJMra1510865
4.
Reeves
,
S. L.
,
Jary
,
H. K.
,
Gondhi
,
J. P.
,
Kleyn
,
M.
,
Spector-Bagdady
,
K.
, and
Dombkowski
,
K. J.
,
2019
, “
Incidence, Demographic Characteristics, and Geographic Distribution of Sickle Cell Trait and Sickle Cell Anemia Births in Michigan, 1997–2014
,”
Mol. Genet. Genomic Med.
,
7
(
8
), p.
e795
. 10.1002/mgg3.795
5.
Birkeland
,
P.
,
Gardner
,
K.
,
Kesse-Adu
,
R.
,
Davies
,
J.
,
Lauritsen
,
J.
,
Rom Poulsen
,
F.
,
Tolias
,
C. M.
, and
Thein
,
S. L.
,
2016
, “
Intracranial Aneurysms in Sickle-Cell Disease Are Associated With the Hemoglobin SS Genotype but Not With Moyamoya Syndrome
,”
Stroke
,
47
(
7
), pp.
1710
1713
.10.1161/STROKEAHA.116.012664
6.
Debaun
,
M. R.
, and
Kirkham
,
F. J.
,
2016
, “
Errata: Central Nervous System Complications and Management in Sickle Cell Disease
,”
Blood, Vol.
,
127
(
21
), p.
2647
.10.1182/blood-2016-04-709626
7.
Farooq
,
S.
, and
Testai
,
F. D.
,
2019
, “
Neurologic Complications of Sickle Cell Disease
,”
Curr. Neurol. Neurosci. Rep
,
19
(
4
), p.
17
.10.1007/s11910-019-0932-0
8.
Preul
,
M. C.
,
Cendes
,
F.
,
Just
,
N.
, and
Mohr
,
G.
,
1998
, “
Intracranial Aneurysms and Sickle Cell Anemia: Multiplicity and Propensity for the Vertebrobasilar Territory
,”
Neurosurgery
,
42
(
5
), pp.
971
977
.10.1097/00006123-199805000-00007
9.
Brandão
,
R. A. C. S.
,
de Carvalho
,
G. T. C.
,
Reis
,
B. L.
,
Bahia
,
E.
, and
de Souza
,
A. A.
,
2009
, “
Intracranial Aneurysms in Sickle Cell Patients: Report of 2 Cases and Review of the Literature
,”
Surg. Neurol.
,
72
(
3
), pp.
296
299
.10.1016/j.surneu.2008.03.044
10.
Berse
,
B.
,
Hunt
,
J. A.
,
Diegel
,
R. J.
,
Morganelli
,
P.
,
Yeo
,
K.-T.
,
Brown
,
F.
, and
Fava
,
R. A.
,
2001
, “
Hypoxia Augments Cytokine (Transforming Growth Factor-Beta (TGF-b) and IL-1)- Induced Vascular Endothelial Growth Factor Secretion by Human Synovial fibroblasts
,”
Clin. Exp. Immunol.
,
115
(
1
), pp.
176
182
.10.1046/j.1365-2249.1999.00775.x
11.
Durmowicz
,
A. G.
,
Badesch
,
D. B.
,
Parks
,
W. C.
,
Mecham
,
R. P.
, and
Stenmark
,
K. R.
,
1991
, “
Hypoxia-Induced Inhibition of Tropoelastin Synthesis by Neonatal Calf Pulmonary Artery Smooth Muscle Cells
,”
Am. J. Respir. Cell Mol. Biol.
,
5
(
5
), pp.
464
469
.10.1165/ajrcmb/5.5.464
12.
Pietila
,
K.
, and
Jaakkola
,
O.
,
1984
, “
Effect of Hypoxia on the Synthesis of Glycosaminoglycans and Collagen by Rabbit Aortic Smooth Muscle Cells in Culture
,”
Atherosclerosis
,
50
(
2
), pp.
183
190
.10.1016/0021-9150(84)90021-2
13.
Uitto
,
J.
, and
Prockop
,
D. J.
,
1974
, “
Synthesis and Secretion of Under-Hydroxylated Procollagen at Various Temperatures by Cells Subject to Temporary Anoxia
,”
Biochem. Biophys. Res. Commun.
,
60
(
1
), pp.
414
423
.10.1016/0006-291X(74)90220-4
14.
Herrick
,
S. E.
,
Ireland
,
G. W.
,
Simon
,
D.
,
McCollum
,
C. N.
, and
Ferguson
,
M. W. J.
,
1996
, “
Venous Ulcer Fibroblasts Compared With Normal Fibroblasts Show Differences in Collagen but Not Fibronectin Production Under Both Normal and Hypoxic Conditions
,”
J. Invest. Dermatol.
,
106
(
1
), pp.
187
193
.10.1111/1523-1747.ep12329920
15.
Steinbrech
,
D. S.
,
Longaker
,
M. T.
,
Mehrara
,
B. J.
,
Saadeh
,
P. B.
,
Chin
,
G. S.
,
Gerrets
,
R. P.
,
Chau
,
D. C.
,
Rowe
,
N. M.
, and
Gittes
,
G. K.
,
1999
, “
Fibroblast Response to Hypoxia: The Relationship Between Angiogenesis and Matrix Regulation
,”
J. Surg. Res.
,
84
(
2
), pp.
127
133
.10.1006/jsre.1999.5627
16.
Levene
,
C. I.
,
Kapoor
,
R.
, and
Heale
,
G.
,
1982
, “
The Effect of Hypoxia on the Synthesis of Collagen and Glycosaminoglycans by Cultured Pig Aortic Endothelium
,”
Atherosclerosis
,
44
(
3
), pp.
327
337
.10.1016/0021-9150(82)90007-7
17.
Abdu
,
A.
,
Gómez-Márquez
,
J.
, and
Aldrich
,
T. K.
,
2008
, “
The Oxygen Affinity of Sickle Hemoglobin
,”
Respir. Physiol. Neurobiol.
,
161
(
1
), pp.
92
94
.10.1016/j.resp.2007.12.005
18.
McCurdy
,
P.
,
Mahmood
,
L.
, and
Sherman
,
A.
,
1975
, “
Red Cell Life Span in Sickle Cell-Hemoglobin C Disease With a Note About Sickle Cell-Hemoglobin O ARAB
,”
Blood
,
45
(
2
), pp.
273
279
.10.1182/blood.V45.2.273.273
19.
Bazzi
,
M. S.
,
Valdez
,
J. M.
,
Barocas
,
V. H.
, and
Wood
,
D. K.
,
2020
, “
An Experimental-Computational Approach to Quantify Blood Rheology in Sickle Cell Disease
,”
Biophys. J.
,
119
(
11
), pp.
2307
2315
.10.1016/j.bpj.2020.10.011
20.
Chassagne
,
F.
,
Barbour
,
M. C.
,
Chivukula
,
V. K.
,
Machicoane
,
N.
,
Kim
,
L. J.
,
Levitt
,
M. R.
, and
Aliseda
,
A.
,
2021
, “
The Effect of Dean, Reynolds and Womersley Numbers on the Flow in a Spherical Cavity on a Curved Round Pipe. Part 1. Fluid Mechanics in the Cavity as a Canonical Flow Representing Intracranial Aneurysms
,”
J. Fluid Mech.
,
915
, pp.
1
19
.10.1017/jfm.2020.1114
21.
Ivanov
,
D.
,
Dol
,
A.
,
Pavlova
,
O.
, and
Aristambekova
,
A.
,
2014
, “
Modeling of Human Circle of Willis With and Without Aneurisms
,”
Acta Bioeng. Biomech.
,
16
(
2
), pp.
121
129
.https://pubmed.ncbi.nlm.nih.gov/25088007/
22.
Parlea
,
L.
,
Fahrig
,
R.
,
Holdsworth
,
D. W.
, and
Lownie
,
S. P.
,
1999
, “
An Analysis of the Geometry of Saccular Intracranial Aneurysms
,”
AJNR Am. J. Neuroradiol.
, 20(6), pp.
1079
1089
.https://pubmed.ncbi.nlm.nih.gov/10445447/
23.
Brown
,
R. D.
, and
Broderick
,
J. P.
,
2014
, “
Unruptured Intracranial Aneurysms: Epidemiology, Natural History, Management Options, and Familial Screening
,”
Lancet. Neurol.
,
13
(
4
), pp.
393
404
.10.1016/S1474-4422(14)70015-8
24.
Kenner
,
T.
,
1989
, “
The Measurement of Blood Density and Its Meaning
,”
Basic Res. Cardiol.
,
84
(
2
), pp.
111
124
.10.1007/BF01907921
25.
Secomb
,
T. W.
, and
Pries
,
A. R.
,
2013
, “
Blood Viscosity in Microvessels: Experiment and Theory
,”
C. R. Phys.
,
14
(
6
), pp.
470
478
.10.1016/j.crhy.2013.04.002
26.
Del Giudice
,
F.
,
2022
, “
A Review of Microfluidic Devices for Rheological Characterisation
,”
Micromachines
,
13
(
2
), p.
167
.10.3390/mi13020167
27.
Feiner
,
J.
,
2018
, “
Chapter 5 Clinical Cardiac and Pulmonary Physiology
,” Basics of Anesthesia, M. C. Pardo, Jr., and R. D. Miller, eds., 7th ed., Elsevier, Amsterdam, The Netherlands.
28.
Billett
,
H. H.
,
1990
, “
Hemoglobin and Hematocrit
,”
Clinical Methods: The History, Physical, and Laboratory Examinations
, 3rd ed., Butterworth Publishers, Oxford, UK.
29.
Akinyanju
,
O. O.
,
1989
, “
A Profile of Sickle Cell Disease in Nigeria
,”
Ann. NY Acad. Sci.
,
565
(
1
), pp.
126
136
.10.1111/j.1749-6632.1989.tb24159.x
30.
Popel
,
A. S.
,
1989
, “
Theory of Oxygen Transport to Tissue
,”
Crit. Rev. Biomed. Eng.
,
17
(
3
), pp.
257
321
.https://pubmed.ncbi.nlm.nih.gov/2673661/
31.
Hill
,
A. V.
,
1910
, “
The Possible Effects of the Aggregation of the Molecules of Hæmoglobin on Its Dissociation Curves
,”
J. Physiol.
,
40
, pp.
4
7
.https://www.bibsonomy.org/bibtex/22354baaa00f618667137ac257a07f844/quantentunnel
32.
Zydney
,
A.
, and
Colton
,
C. K.
,
1988
, “
Augmented Solute Transport in the Shear Flow of A Concentrated Suspension
,”
PCH, Physicochem. Hydrodyn.
,
10
(
1
), pp.
77
96
.https://pure.psu.edu/en/publications/augmented-solute-transport-in-the-shear-flow-of-a-concentrated-su
33.
Moore
,
J. A.
, and
Ethier
,
C. R.
,
1997
, “
Oxygen Mass Transfer Calculations in Large Arteries
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
469
475
.10.1115/1.2798295
34.
Huang
,
Z. J.
, and
Tarbell
,
J. M.
,
1997
, “
Numerical Simulation of Mass Transfer in Porous Media of Blood Vessel Walls
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
273
(
1
), pp.
H464
H477
.10.1152/ajpheart.1997.273.1.H464
35.
Lever
,
M. J.
,
1995
, “
Mass Transport Through the Walls of Arteries and Veins
,”
Biological Flows
,
M. Y.
Jaffrin
, and
C. G.
Caro
, eds.,
Springer US
,
Boston, MA
, pp.
177
197
.
36.
Tedgui
,
A.
, and
Lever
,
M. J.
,
1985
, “
The Interaction of Convection and Diffusion in the Transport of 131I-Albumin Within the Media of the Rabbit Thoracic Aorta
,”
Circ. Res.
,
57
(
6
), pp.
856
863
.10.1161/01.RES.57.6.856
37.
Kumar
,
N.
,
Khader
,
S. M. A.
,
Pai
,
R.
,
Khan
,
S. H.
, and
Kyriacou
,
P. A.
,
2020
, “
Fluid Structure Interaction Study of Stenosed Carotid Artery Considering the Effects of Blood Pressure
,”
Int. J. Eng. Sci.
,
154
(×), p.
103341
.10.1016/j.ijengsci.2020.103341
38.
Swillens
,
A.
,
De Santis
,
G.
,
Degroote
,
J.
,
Lovstakken
,
L.
,
Vierendeels
,
J.
, and
Segers
,
P.
,
2012
, “
Accuracy of Carotid Strain Estimates From Ultrasonic Wall Tracking: A Study Based on Multiphysics Simulations and In Vivo Data
,”
IEEE Trans. Med. Imaging
,
31
(
1
), pp.
131
139
.10.1109/TMI.2011.2165959
39.
Funamoto
,
K.
,
Yoshino
,
D.
,
Matsubara
,
K.
,
Zervantonakis
,
I. K.
,
Funamoto
,
K.
,
Nakayama
,
M.
,
Masamune
,
J.
,
Kimura
,
Y.
, and
Kamm
,
R. D.
,
2017
, “
Endothelial Monolayer Permeability Under Controlled Oxygen Tension
,”
Integr. Biol.
,
9
(
6
), pp.
529
538
.10.1039/C7IB00068E
40.
Vu
,
C.
,
Bush
,
A.
,
Choi
,
S.
,
Borzage
,
M.
,
Miao
,
X.
,
Nederveen
,
A. J.
,
Coates
,
T. D.
, and
Wood
,
J. C.
,
2021
, “
Reduced Global Cerebral Oxygen Metabolic Rate in Sickle Cell Disease and Chronic Anemias
,”
Am. J. Hematol.
,
96
(
8
), pp.
901
913
.10.1002/ajh.26203
41.
Schmalzer
,
E. A.
,
Lee
,
J. O.
,
Brown
,
A. K.
,
Usami
,
S.
, and
Chien
,
S.
,
1987
, “
Viscosity of Mixtures of Sickle and Normal Red Cells at Varying Hematocrit Levels
,”
Transfusion
,
27
(
3
), pp.
228
233
.10.1046/j.1537-2995.1987.27387235626.x
42.
Rivera
,
C. P.
,
Veneziani
,
A.
,
Ware
,
R. E.
, and
Platt
,
M. O.
,
2016
, “
Original Research: Sickle Cell Anemia and Pediatric Strokes: Computational Fluid Dynamics Analysis in the Middle Cerebral Artery
,”
Exp. Biol. Med. (Maywood)
,
241
(
7
), pp.
755
765
.10.1177/1535370216636722
43.
Keller
,
S. B.
,
Bumpus
,
J. M.
,
Gatenby
,
J. C.
,
Yang
,
E.
,
Kassim
,
A. A.
,
Dampier
,
C.
,
Gore
,
J. C.
, and
Buck
,
A. K. W.
,
2022
, “
Characterizing Intracranial Hemodynamics in Sickle Cell Anemia: Impact of Patient-Specific Viscosity
,”
Cardiovasc. Eng. Tech.
,
13
(
1
), pp.
104
119
.10.1007/s13239-021-00559-2
44.
Cunningham
,
K. S.
, and
Gotlieb
,
A. I.
,
2005
, “
The Role of Shear Stress in the Pathogenesis of Atherosclerosis
,”
Lab. Invest.
,
85
(
1
), pp.
9
23
.10.1038/labinvest.3700215
45.
Tarbell
,
J.
,
Mahmoud
,
M.
,
Corti
,
A.
,
Cardoso
,
L.
, and
Caro
,
C.
,
2020
, “
The Role of Oxygen Transport in Atherosclerosis and Vascular Disease
,”
J. R. Soc. Interface.
,
17
(
165
), p.
20190732
.10.1098/rsif.2019.0732
You do not currently have access to this content.