Abstract

The dynamics of electro-osmotically generated flow of biological viscoelastic fluid in a cylindrical geometry are investigated in this paper. This flux is the result of walls contracting and relaxing sinusoidally in a magnetic environment. The blood's viscoelasticity and shear-thinning viscosity are the primary causes of its non-Newtonian characteristics. Hence, the rheology of the fluid (blood) is accurately captured with the Ellis fluid model. Both Joule heating and viscous dissipation are accounted for during thermal analysis. The electric potential induced in the electric double layer (EDL) is obtained by applying the Debye-Huckel linearization to the nonlinear Poisson-Boltzmann equation. Mathematical modelling is incorporated in cylindrical coordinates in wave frame of reference. Assuming a long wavelength and creeping flow characterized by a low Reynolds number, the Ellis fluid model's governing equations are simplified. The resulting differential equations are evaluated numerically via the built-in tool NDSolve of the Mathematica. Graphical representations are utilized to visually and comprehensively assess the thermal characteristics, flow features, heat transfer coefficient, and skin friction coefficient. Various factors are taken into consideration, including the impact of Ellis fluid parameters, electric double layer, magnetic field, Brinkman number, and Ohmic dissipation. Ellis fluid's axial velocity boosts with a rise of the electro-osmotic parameter and power-law index while decreasing with an increase in the Hartmann number and material fluid parameter. The fluid temperature is directly proportional to EDL parameter and parameters of Ohmic and viscous dissipation. The presence of both electric and magnetic fields may aid in the management and control of Ellis fluid (blood) mobility at different temperatures, which is helpful in controlling bleeding during surgeries. The current model may be used in clinical scenarios involving the gastrointestinal system and capillaries, electrohydrodynamic therapy, delivery of drugs in pharmacological, and biomedical devices. This research creates a theoretical model that can predict the effects of different parameters on the characteristics of fluid flows that are like blood.

References

1.
Sinha
,
A.
, and
Shit
,
G.
,
2015
, “
Electromagnetohydrodynamic Flow of Blood and Heat Transfer in a Capillary With Thermal Radiation
,”
J. Magn. Magn. Mater.
,
378
, pp.
143
151
.10.1016/j.jmmm.2014.11.029
2.
Rice
,
C. L.
, and
Whitehead
,
R.
,
1965
, “
Electrokinetic Flow in a Narrow Cylindrical Capillary
,”
J. Phys. Chem.
,
69
(
11
), pp.
4017
4024
.10.1021/j100895a062
3.
Kang
,
Y.
,
Yang
,
C.
, and
Huang
,
X.
,
2002
, “
Dynamic Aspects of Electroosmotic Flow in a Cylindrical Microcapillary
,”
Int. J. Eng. Sci.
,
40
(
20
), pp.
2203
2221
.10.1016/S0020-7225(02)00143-X
4.
Barton
,
C.
, and
Raynor
,
S.
,
1968
, “
Peristaltic Flow in Tubes
,”
Bull. Math. Biophys.
,
30
(
4
), pp.
663
680
.10.1007/BF02476682
5.
Lew
,
H. S.
,
Fung
,
Y. C.
, and
Lowenstein
,
C. B.
,
1971
, “
Peristaltic Carrying and Mixing of Chyme in the Small Intestine (an Analysis of a Mathematical Model of Peristalsis of the Small Intestine)
,”
J. Biomech.
,
4
(
4
), pp.
297
315
.10.1016/0021-9290(71)90036-4
6.
Srinivasacharya
,
D.
,
Mishra
,
M.
, and
Rao
,
A. R.
,
2003
, “
Peristaltic Pumping of a Micropolar Fluid in a Tube
,”
Acta Mech.
,
161
(
3
), pp.
165
178
.10.1007/s00707-002-0993-y
7.
Naby
,
A. E. H. A. E.
,
Misiery
,
A. E. M. E.
, and
Shamy
,
I. I. E.
,
2003
, “
Hydromagnetic Flow of Fluid With Variable Viscosity in a Uniform Tube With Peristalsis
,”
J. Phys. A: Math. General
,
36
(
31
), pp.
8535
8547
.10.1088/0305-4470/36/31/314
8.
Mekheimer
,
K.
, and
Abd Elmaboud
,
Y.
,
2008
, “
Peristaltic Flow of a Couple Stress Fluid in an Annulus: Application of an Endoscope
,”
Phys. A: Stat. Mech. Appl.
,
387
(
11
), pp.
2403
2415
.10.1016/j.physa.2007.12.017
9.
Tripathi
,
D.
,
2011
, “
Peristaltic Flow of a Fractional Second Grade Fluid Through a Cylindrical Tube
,”
Therm. Sci.
,
15
(
suppl. 2
), pp.
167
173
.10.2298/TSCI100503061T
10.
Mustafa
,
T.
,
2020
, “
Eyring–Powell Fluid Flow Through a Circular Pipe and Heat Transfer: Full Solutions
,”
Int. J. Numer. Methods Heat Fluid Flow
,
30
(
11
), pp.
4765
4774
.10.1108/HFF-12-2019-0925
11.
Krishna
,
M. V.
, and
Chamkha
,
A. J.
,
2019
, “
MHD Peristaltic Rotating Flow of a Couple Stress Fluid Through a Porous Medium Withwall and Slip Effects
,”
Spec. Top. Rev. Porous Media: An Int. J.
,
10
(
3
), pp.
245
258
.10.1615/SpecialTopicsRevPorousMedia.2019028609
12.
Bhatti
,
M. M.
, and
Abdelsalam
,
S. I.
,
2022
, “
Scientific Breakdown of a Ferromagnetic Nanofluid in Hemodynamics: Enhanced Therapeutic Approach
,”
Math. Modell. Natural Phenom.
,
17
, p.
44
.10.1051/mmnp/2022045
13.
Chakraborty
,
S.
,
2006
, “
Augmentation of Peristaltic Microflows Through Electro-Osmotic Mechanisms
,”
J. Phys. D: Appl. Phys.
,
39
(
24
), pp.
5356
5363
.10.1088/0022-3727/39/24/037
14.
Tripathi
,
D.
,
2011
, “
Peristaltic Transport of Fractional Maxwell Fluids in Uniform Tubes: Applications in Endoscopy
,”
Comput. Math. Appl.
, 62(
3
), pp.
1116
1126
.10.1016/j.camwa.2011.03.038
15.
Tripathi
,
D.
,
Bhushan
,
S.
, and
Bég
,
O. A.
,
2016
, “
Transverse Magnetic Field Driven Modification in Unsteady Peristaltic Transport With Electrical Double Layer Effects
,”
Colloids Surf., A
,
506
, pp.
32
39
.10.1016/j.colsurfa.2016.06.004
16.
Tripathi
,
D.
,
Sharma
,
A.
, and
Bég
,
O. A.
,
2018
, “
Joule Heating and Buoyancy Effects in Electro-Osmotic Peristaltic Transport of Aqueous Nanofluids Through a Microchannel With Complex Wave Propagation
,”
Adv. Powder Technol.
,
29
(
3
), pp.
639
653
.10.1016/j.apt.2017.12.009
17.
Guo
,
X.
, and
Qi
,
H.
,
2017
, “
Analytical Solution of Electro-Osmotic Peristalsis of Fractional Jeffreys Fluid in a Micro-Channel
,”
Micromachines
,
8
(
12
), p.
341
.10.3390/mi8120341
18.
Mekheimer
,
K. S.
,
Abo-Elkhair
,
R. E.
, and
Moawad
,
A. M. A.
,
2018
, “
Electro-Osmotic Flow of Non-Newtonian Biofluids Through Wavy Micro-Concentric Tubes
,”
BioNanoScience
,
8
(
3
), pp.
723
734
.10.1007/s12668-018-0523-6
19.
Venugopal Reddy
,
K.
,
Makinde
,
O. D.
, and
Gnaneswara Reddy
,
M.
,
2018
, “
Thermal Analysis of MHD Electro-Osmotic Peristaltic Pumping of Casson Fluid Through a Rotating Asymmetric Micro-Channel
,”
Indian J. Phys.
,
92
(
11
), pp.
1439
1448
.10.1007/s12648-018-1209-1
20.
Hussain
,
S.
,
Ali
,
N.
, and
Ullah
,
K.
,
2019
, “
Peristaltic Flow of Phan-Thien-Tanner Fluid: Effects of Peripheral Layer and Electro-Osmotic Force
,”
Rheol. Acta
,
58
(
9
), pp.
603
618
.10.1007/s00397-019-01158-8
21.
Noreen
,
S.
, and
Waheed
,
S.
,
2021
, “
Study of Heat Characteristics of Electroosmotic Mediator and Peristaltic Mechanism Via Porous Microtube
,”
BioNanoScience
,
11
(
2
), pp.
476
488
.10.1007/s12668-020-00815-0
22.
Saleem
,
S.
,
Akhtar
,
S.
,
Nadeem
,
S.
,
Saleem
,
A.
,
Ghalambaz
,
M.
, and
Issakhov
,
A.
,
2021
, “
Mathematical Study of Electroosmotically Driven Peristaltic Flow of Casson Fluid Inside a Tube Having Systematically Contracting and Relaxing Sinusoidal Heated Walls
,”
Chin. J. Phys.
,
71
, pp.
300
311
.10.1016/j.cjph.2021.02.015
23.
Kotnurkar
,
A. S.
, and
Talawar
,
V. T.
,
2022
, “
Impact of Electroosmosis and Joule Heating Effects on Peristaltic Transport With Thermal Radiation of Hyperbolic Tangent Fluid Through a Porous Media in an Endoscope
,”
Partial Differ. Equations Appl. Math.
,
5
, p.
100340
.10.1016/j.padiff.2022.100340
24.
Akram
,
J.
, and
Akbar
,
N. S.
,
2022
, “
Mathematical Modeling of Aphron Drilling Nanofluid Driven by Electroosmotically Modulated Peristalsis Through a Pipe
,”
Math. Modell. Natural Phenom.
,
17
, p.
19
.10.1051/mmnp/2022012
25.
Channakote
,
M. M.
, and
Asha
,
S. K.
,
2023
, “
Heat Transfer and Electro-Osmotic Analysis on Peristaltic Pumping of a Fractional Second-Grade Fluid Through a Cylindrical Tube
,”
Int. J. Comput. Mater. Sci. Eng.
,
12
(
4
), p.
2350007
.10.1142/S2047684123500070
26.
Aslam
,
F.
,
Noreen
,
S.
,
Afridi
,
M. I.
, and
Qasim
,
M.
,
2023
, “
Analysis of Homogeneous/Heterogeneous Reactions in an Electrohydrodynamic Environment Utilizing the Second Law
,”
Micromachines
,
14
(
4
), p.
821
.10.3390/mi14040821
27.
Aslam
,
F.
,
Noreen
,
S.
,
Lu
,
D.
, and
Tripathi
,
D.
,
2023
, “
Regulation of Thermo-Electro-Magneto Dynamics in Course of Peristalsis
,”
J. Magn. Magn. Mater.
,
574
, p.
170711
.10.1016/j.jmmm.2023.170711
28.
Aslam
,
F.
, and
Noreen
,
S.
,
2023
, “
Electrokinetic Peristaltic Transport of Bingham‐Papanastasiou Fluid Via Porous Media
,”
ZAMM - J. Appl. Math. Mech./Z. Für Angew. Mathematik Und Mechanik.
, 104(2), p. e202300070.10.1002/zamm.202300070
29.
Abbas
,
M. A.
,
Bhatti
,
M. M.
, and
Rashidi
,
M. M.
,
2017
, “
Peristaltic Blood Flow of Ellis Fluid Through a Nonuniform Channel Having Compliant Walls
,”
J. Nanofluids
,
6
(
2
), pp.
318
323
.10.1166/jon.2017.1314
30.
Ali
,
N.
,
Hussain
,
S.
,
Ullah
,
K.
, and
Anwar Bég
,
O.
,
2019
, “
Mathematical Modelling of Two-Fluid Electro-Osmotic Peristaltic Pumping of an Ellis Fluid in an Axisymmetric Tube
,”
Eur. Phys. J. Plus
,
134
(
4
), pp.
141
159
.10.1140/epjp/i2019-12488-2
31.
Goud
,
J. S.
, and
Reddy
,
R. H.
,
2018
, “
Peristaltic Motion of an Ellis Fluid Model in a Vertical Uniform Tube With Wall Properties
,”
Int. J. Civ. Eng. Technol.
,
9
, pp.
847
856
.https://www.researchgate.net/publication/323250006_Peristaltic_motion_of_an_Ellis_fluid_model_in_a_vertical_uniform_tube_with_wall_properties
32.
Javed
,
M.
,
Qadeer
,
F.
,
Imran
,
N.
,
Kumam
,
P.
, and
Sohail
,
M.
,
2022
, “
Peristaltic Mechanism of Ellis Fluid in Curved Configuration With Homogeneous and Heterogeneous Effects
,”
Alexandria Eng. J.
,
61
(
12
), pp.
10677
10688
.10.1016/j.aej.2022.03.065
33.
Abbasi
,
A.
,
Khan
,
S. U.
,
Farooq
,
W.
,
Mughal
,
F.
,
Ijaz Khan
,
M.
,
Prasannakumara
,
B.
,
El-Wakad
,
M. T.
,
Guedri
,
K.
, and
Galal
,
A. M.
,
2023
, “
Peristaltic Flow of Chemically Reactive Ellis Fluid Through an Asymmetric Channel: Heat and Mass Transfer Analysis
,”
Ain Shams Eng. J.
,
14
(
1
), p.
101832
.10.1016/j.asej.2022.101832
34.
Vinnakota
,
K. C.
,
Wu
,
F.
,
Kushmerick
,
M. J.
, and
Beard
,
D. A.
,
2009
, “
Multiple Ion Binding Equilibria, Reaction Kinetics, and Thermodynamics in Dynamic Models of Biochemical Pathways
,”
Methods Enzymol.
,
454
, pp.
29
68
.10.1016/S0076-6879(08)03802-0
You do not currently have access to this content.