Abstract

Academia often uses the “circular geometry hypothesis” to explain the sensing principle of the human semicircular canal (SCC) system for angular acceleration, which is widely accepted as an important angular acceleration sensor in the human balance system. On the basis of this hypothesis and the anatomical structure of human SCCs, a series of physical SCC models with different geometries at 4× magnification were prepared via three-dimensional printing and modification of hydrogels. Theoretical models of the SCC perception mechanism were established. Then, impulse angular acceleration, sinusoidal rotation, and sinusoidal linear stimulation were applied to the models, and their responses were visually observed and analyzed in detail. As a result, the circular SCC model had a larger system gain and a smaller phase difference for angular acceleration stimulation but a smaller system gain and a larger phase difference for linear acceleration stimulation. These results verified that the circular semicircular canal was more sensitive to angular acceleration. Our bionic model is hoped to be used for demonstrating the human SCC working process, facilitating researchers in better understanding of the working mechanism of the human SCC, or as a manual model for medical staff to simulate the diagnosis and treatment of human SCC.

References

1.
Cardullo
,
F.
,
Stanco
,
A.
, and
Hosman
,
R.
,
2010
, “
The Somatosensory System: Physiology and Models
,”
AIAA
Paper No. 2010-8357.10.2514/6.2010-8357
2.
Bradshaw
,
A. P.
,
Curthoys
,
I. S.
,
Todd
,
M. J.
,
Magnussen
,
J. S.
,
Taubman
,
D. S.
,
Aw
,
S. T.
, and
Halmagyi
,
G. M.
,
2010
, “
A Mathematical Model of Human Semicircular Canal Geometry: A New Basis for Interpreting Vestibular Physiology
,”
J. Assoc. Res. Otolaryngol.
,
11
(
2
), pp.
145
159
.10.1007/s10162-009-0195-6
3.
Araújo
,
R.
,
David
,
R.
,
Benoit
,
J.
,
Lungmus
,
J. K.
,
Stoessel
,
A.
,
Barrett
,
P. M.
,
Maisano
,
J. A.
,
Ekdale
,
E.
,
Orliac
,
M.
,
Luo
,
Z.-X.
,
Martinelli
,
A. G.
,
Hoffman
,
E. A.
,
Sidor
,
C. A.
,
Martins
,
R. M. S.
,
Spoor
,
F.
, and
Angielczyk
,
K. D.
,
2021
, “
Inner Ear Biomechanics Reveals Late Triassic Origin of Mammalian Endothermy
,”
Nature
,
607
(
7920
), pp.
726
731
.10.1038/s41586-022-04963-z
4.
Hashimoto
,
S.
,
Naganuma
,
H.
,
Tokumasu
,
K.
,
Itoh
,
A.
, and
Okamoto
,
M.
,
2005
, “
Three-Dimensional Reconstruction of the Human Semicircular Canals and Measurement of Each Membranous Canal Plane Defined by Reid's Stereotactic Coordinates
,”
Ann. Otol., Rhinol., Laryngol.
,
114
(
12
), pp.
934
938
.10.1177/000348940511401207
5.
Lyu
,
H. Y.
,
Chen
,
K. G.
,
Yin
,
D. M.
,
Hong
,
J.
,
Yang
,
L.
,
Zhang
,
T. Y.
, and
Dai
,
P. D.
,
2016
, “
The Age-Related Orientational Changes of Human Semicircular Canals
,”
Clin. Exp. Otorhinolaryngol.
,
9
(
2
), pp.
109
115
.10.21053/ceo.2014.02012
6.
Wu
,
S. Z.
,
Lin
,
P.
,
Zheng
,
Y. Y.
,
Zhou
,
Y. F.
, and
Yang
,
X. K.
,
2021
, “
Mathematical Model of Human Semicircular Canal Spatial Attitude
,”
Front. Neurol.
,
240
(
3
), pp.
541
555
.10.21203/rs.3.rs-146523/v1
7.
Lee
,
J. Y.
,
Shin
,
K. J.
,
Kim
,
J. N.
,
Yoo
,
J. Y.
,
Song
,
W. C.
, and
Koh
,
K. S.
,
2013
, “
A Morphometric Study of the Semicircular Canals Using Micro‐CT Images in Three‐Dimensional Reconstruction
,”
Anat. Rec.
,
296
(
5
), pp.
834
839
.10.1002/ar.22664
8.
Marianelli
,
P.
,
Berthoz
,
A.
, and
Bennequin
,
D.
,
2015
, “
Crista Egregia: A Geometrical Model of the Crista Ampullaris, a Sensory Surface That Detects Head Rotations
,”
Biol. Cybern.
,
109
(
1
), pp.
5
32
.10.1007/s00422-014-0623-5
9.
Schubert
,
M. C.
, and
Minor
,
L. B.
,
2004
, “
Vestibulo-Ocular Physiology Underlying Vestibular Hypofunction
,”
Phys. Ther.
,
84
(
4
), pp.
373
385
.10.1093/ptj/84.4.373
10.
Steinhausen
,
W.
,
1932
, “
Über Die Wittmaacksche Turgor- Und Drucktheorie Und Die Mach-Breuersche Theorie Der Verlagerung Der Cupula Terminalis in Den Bogengängen Des Vestibularapparates
,”
Arch. Ohren-, Nasen- Kehlkopfheilkd.
,
132
(
2–3
), pp.
134
152
.10.1007/BF01582744
11.
Van
Egmond
,
A. A. J.
,
Groen
,
J. J.
, and
Jongkees
,
L. B. W.
,
1949
, “
The Mechanics of the Semicircular Canal
,”
J. Physiol.
,
110
(
1–2
), pp.
1
17
.10.1113/jphysiol.1949.sp004416
12.
Lowenstein
,
O.
, and
Compton
,
G. J.
,
1978
, “
A Comparative Study of the Responses of Isolated First-Order Semicircular Canal Afferents to Angular and Linear Acceleration, Analyzed in the Time and Frequency Domains
,”
Proc. R. Soc. B: Biol. Sci.
,
202
(
1148
), pp.
313
338
.10.1098/rspb.1978.0070
13.
Ciaravella
,
G.
,
Laschi
,
C.
, and
Dario
,
P.
,
2006
, “
Biomechanical Modeling of Semicircular Canals for Fabricating a Biomimetic Vestibular System
,”
Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society
, New York, Aug. 30–Sept. 3, pp.
1758
1761
.10.1109/IEMBS.2006.260248
14.
Mcgarvie
,
L. A.
,
Curthoys
,
I. S.
,
Macdougall
,
H. G.
, and
Halmagyi
,
G. M.
,
2015
, “
What Does the Dissociation Between the Results of Video Head Impulse Versus Caloric Testing Reveal About the Vestibular Dysfunction in Ménière's Disease?
,”
Acta Oto-Laryngol.
,
135
(
9
), pp.
859
865
.10.3109/00016489.2015.1015606
15.
Rey-
Martínez
,
J.
,
Altuna
,
X.
,
Cheng
,
K.
,
Burgess
,
A. M.
, and
Curthoys
,
I. S.
,
2020
, “
Computing Endolymph Hydrodynamics During Head Impulse Test on Normal and Hydropic Vestibular Labyrinth Models
,”
Front. Neurol.
,
11
(
4
), pp.
289
298
.10.3389/fneur.2020.00289
16.
Goyens
,
J.
, and
Aerts
,
P.
,
2019
, “
Why the Semicircular Canals Are Not Stimulated by Linear Accelerations
,”
Bioinspiration Biomimetics
,
14
(
5
), p.
056004
.10.1088/1748-3190/ab2cbf
17.
Spoor
,
F.
, and
Zonneveld
,
F.
,
1998
, “
Comparative Review of the Human Bony Labyrinth
,”
Am. J. Phys. Anthropol.
,
107
(
S27
), pp.
211
251
.10.1002/(SICI)1096-8644(1998)107:27+<211::AID-AJPA8>3.0.CO;2-V
18.
Goyens
,
J.
,
2019
, “
High Ellipticity Reduces Semi-Circular Canal Sensitivity in Squamates Compared to Mammals
,”
Sci. Rep.
,
9
(
1
), p.
16428
.10.1038/s41598-019-52828-9
19.
Lambert
,
F. M.
,
Beck
,
J. C.
,
Baker
,
R.
, and
Straka
,
H.
,
2008
, “
Semicircular Canal Size Determines the Developmental Onset of Angular Vestibuloocular Reflexes in Larval Xenopus
,”
J. Neurosci.
,
28
(
32
), pp.
8086
8095
.10.1523/JNEUROSCI.1288-08.2008
20.
Bernadette
,
K.
,
Amy
,
G.
,
John
,
E.
, and
Corning
,
B.
,
2006
, “
Partial Absence of the Posterior Semicircular Canal in Alagille Syndrome: CT Findings
,”
Pediatr. Radiol.
,
36
(
9
), pp.
977
979
.10.1007/s00247-006-0230-2
21.
Obrist
,
D.
,
Hegemann
,
S.
,
Kronenberg
,
D.
,
Häuselmann
,
O.
, and
Rösgen
,
T.
,
2009
, “
In Vitro Model of a Semicircular Canal: Design and Validation of the Model and Its Use for the Study of Canalithiasis
,”
J. Biomech.
,
43
(
6
), pp.
1208
1214
.10.1016/j.jbiomech.2009.11.027
22.
Curthoys
,
I. S.
,
Blanks
,
R. H. I.
, and
Markham
,
C. H.
,
1977
, “
Semicircular Canal Radii of Curvature (R) in Cat, Guinea Pig and Man
,”
J. Morphol.
,
151
(
1
), pp.
1
15
.10.1002/jmor.1051510102
23.
Curthoys
,
I. S.
, and
Oman
,
C. M.
,
1986
, “
Dimensions of the Horizontal Semicircular Duct, Ampulla and Utricle in Rat and Guinea Pig
,”
Acta Oto-Laryngol.
,
101
(
1–2
), pp.
1
10
.10.3109/00016488609108601
24.
Oman
,
C. M.
,
Marcus
,
E. N.
, and
Curthoys
,
I. S.
,
1987
, “
The Influence of Semicircular Canal Morphology on Endolymph Flow Dynamics. An Anatomically Descriptive Mathematical Model
,”
Acta Oto-Laryngol.
,
103
(
1–2
), pp.
1
13
.10.3109/00016488709134691
25.
Igarashi
,
M.
,
1967
, “
Dimensional Study of the Vestibular Apparatus
,”
Laryngoscope
,
77
(
10
), pp.
1806
1817
.10.1288/00005537-196710000-00003
26.
Kassemi
,
M.
,
Deserranno
,
D.
, and
Oas
,
J. G.
,
2005
, “
Fluid–Structural Interactions in the Inner Ear
,”
Comput. Struct.
,
83
(
2–3
), pp.
181
189
.10.1016/j.compstruc.2004.08.001
27.
Ifediba
,
M. A.
,
Rajguru
,
S. M.
,
Hullar
,
T. E.
, and
Rabbitt
,
R. D.
,
2007
, “
The Role of 3-Canal Biomechanics in Angular Motion Transduction by the Human Vestibular Labyrinth
,”
Ann. Biomed. Eng.
,
35
(
7
), pp.
1247
1263
.10.1007/s10439-007-9277-y
28.
Kondrachuk
,
A. V.
, and
Boyle
,
R. D.
,
2011
, “
The Density Difference of Cupula and Endolymph Changes the Mechanics of Semicircular Canals
,”
Microgravity Sci. Technol.
,
23
(
4
), pp.
433
438
.10.1007/s12217-011-9265-6
29.
Squires
,
T. M.
,
Weidman
,
M. S.
,
Hain
,
T. C.
, and
Stone
,
H. A.
,
2004
, “
A Mathematical Model for Top-Shelf Vertigo: The Role of Sedimenting Otoconia in BPPV
,”
J. Biomech.
,
37
(
8
), pp.
1137
1146
.10.1016/j.jbiomech.2003.12.014
30.
Shien
,
L.
,
Wenxuan
,
Z.
,
Zhi
,
W.
,
Yani
,
J.
, and
Yixiang
,
B.
,
2023
, “
Design of an In Vitro Semicircular Canal Model and Its Use for the Study of Canalithiasis
,”
ASME J. Biomech. Eng.
,
145
(
10
), p.
101003
.10.1115/1.4062593
31.
Kui
,
Z.
,
Yan
,
L.
,
Xuewen
,
S.
,
Ruihao
,
Z.
,
Yixiang
,
H.
,
Huaibin
,
Z.
, and
Wenji
,
W.
,
2023
, “
Application of Polyvinyl Alcohol/Chitosan Copolymer Hydrogels in Biomedicine: A Review
,”
Int. J. Biol. Macromol.
,
242
(
P4
), p.
125192
.10.1016/j.ijbiomac.2023.125192
32.
Selva
,
P.
,
Oman
,
C. M.
, and
Stone
,
H. A.
,
2010
, “
Mechanical Properties and Motion of the Cupula of the Human Semicircular Canal
,”
J. Vestibular Res.
,
19
(
3–4
), pp.
95
110
.10.3233/VES-2009-0359
33.
Senchenko
,
V.
,
Lopatina
,
V.
, and
Butsanets
,
A.
,
2021
, “
Calculating the Longitudinal and Vertical Displacements of a Moving Object by Digital Image Processing Methods
,”
E3S Web Conf.
,
258
(
95
), p.
02005
.10.1051/e3sconf/202125802005
34.
Cootes
,
T. F.
,
Hill
,
A.
,
Taylor
,
C. J.
, and
Haslam
,
J.
,
1993
, “
The Use of Active Shape Models for Locating Structures in Medical Images
,”
Image Vision Comput.
,
12
(
6
), pp.
355
365
.10.1016/0262-8856(94)90060-4
35.
Rabbitt
,
R. D.
, and
Damiano
,
E. R.
,
2006
, “
A Hydroelastic Model of Macromechanics in the Endolymphatic Vestibular Canal
,”
J. Fluid Mech.
,
238
(
1
), pp.
337
369
.10.1017/S0022112092001745
36.
Arakeri
,
J. H.
,
2000
, “
Bernoulli's Equation
,”
Resonance
,
5
(
8
), pp.
54
71
.10.1007/BF02837937
37.
Baloh
,
R. W.
, and
Honrubia
,
V.
,
2001
,
Clinical Neurophysiology of the Vestibular System
,
Oxford University Press
, New York, 12(10), p. 955.10.1093/oso/9780195139822.001.0001
38.
Dai
,
M.
,
Klein
,
A.
,
Cohen
,
B.
, and
Raphan
,
T.
,
1999
, “
Model-Based Study of the Human Cupular Time Constant
,”
J. Vestibular Res.
,
9
(
4
), pp.
293
301
.10.3233/VES-1999-9407
39.
Stauffer
,
E. A.
,
Scarborough
,
J. D.
,
Hirono
,
M.
,
Miller
,
E. D.
,
Shah
,
K.
,
Mercer
,
J. A.
,
Holt
,
J. R.
, and
Gillespie
,
P. G.
,
2005
, “
Fast Adaptation in Vestibular Hair Cells Requires Myosin-1c Activity
,”
Neuron
,
47
(
4
), pp.
541
553
.10.1016/j.neuron.2005.07.024
You do not currently have access to this content.