Abstract

Understanding the natural biomechanics of walking at different speeds and activities is crucial to develop effective assistive devices for persons with lower-limb impairments. While continuous measures such as joint angle and moment are well-suited for biomimetic control of robotic systems, whole-stride summary metrics are useful for describing changes across behaviors and for designing and controlling passive and semi-active devices. Dynamic mean ankle moment arm (DMAMA) is a whole-stride measure representing the moment arm of the ground reaction impulse about the ankle joint—effectively, how “forefoot-dominated” or “hindfoot-dominated” a movement is. DMAMA was developed as a target and performance metric for semi-active devices that adjust once per stride. However, for implementation in this application, DMAMA must be characterized across various activities in unimpaired individuals. In our study, unimpaired participants walked at “slow,” “normal,” and “fast” self-selected speeds on level ground and at a normal self-selected speed while ascending and descending stairs and a 5-degree incline ramp. DMAMA measured from these activities displayed a borderline-significant negative sensitivity to walking speed, a significant positive sensitivity to ground incline, and a significant decrease when ascending stairs compared to descending. The data suggested a nonlinear relationship between DMAMA and walking speed; half of the participants had the highest average DMAMA at their “normal” speed. Our findings suggest that DMAMA varies substantially across activities, and thus, matching DMAMA could be a valuable metric to consider when designing biomimetic assistive lower-limb devices.

References

1.
Blatchford
,
2023
, “
Elan
,” accessed Nov. 13, 2022, https://www.blatchfordmobility.com/en-us/products/feet-ankles/elan/
2.
College Park
,
2023
, “
OdysseyK2
,” College Park, Warren, MI, accessed Nov. 13, 2022, https://www.college-park.com/odysseyk2
3.
College Park
,
2023
, “
OdysseyK3
,” College Park, Warren, MI, accessed Nov. 13, 2022, https://www.college-park.com/odysseyk3
5.
Ottobock
,
2023
, “
Triton Smart Ankle (Discontinued)
,” MCOP Prosthet, accessed Nov. 13, 2022, https://mcopro.com/prosthetics/technology/ottobock-triton-smart-ankle/
6.
Proteor
,
2023
, “
Freedom Kinnex 2.0
,” Proteor, Tempe, AZ, accessed Apr. 13, 2024, https://us.proteor.com/ankles/kinnex-2-0/
7.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2017
, “
The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
12
), pp.
2375
2386
.10.1109/TNSRE.2017.2750113
8.
Glanzer
,
E. M.
, and
Adamczyk
,
P. G.
,
2018
, “
Design and Validation of a Semi-Active Variable Stiffness Foot Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
12
), pp.
2351
2359
.10.1109/TNSRE.2018.2877962
9.
Lecomte
,
C.
,
Ármannsdóttir
,
A. L.
,
Starker
,
F.
,
Tryggvason
,
H.
,
Briem
,
K.
, and
Brynjolfsson
,
S.
,
2021
, “
Variable Stiffness Foot Design and Validation
,”
J. Biomech.
,
122
, p.
110440
.10.1016/j.jbiomech.2021.110440
10.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2017
, “
Design of a Quasi-Passive Ankle-Foot Prosthesis With Biomimetic, Variable Stiffness
,” 2017 IEEE International Conference on Robotics and Automation (
ICRA
), Singapore, May 29–June 3, pp.
6672
6678
.10.1109/ICRA.2017.7989788
11.
Tryggvason
,
H.
,
Starker
,
F.
,
Armannsdottir
,
A. L.
,
Lecomte
,
C.
, and
Jonsdottir
,
F.
,
2020
, “
Speed Adaptable Prosthetic Foot: Concept Description, Prototyping and Initial User Testing
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
12
), pp.
2978
2986
.10.1109/TNSRE.2020.3036329
12.
Adamczyk
,
P. G.
,
2008
, “
The Influence of Center of Mass Velocity Redirection on Mechanical and Metabolic Performance During Walking
,”
Ph.D. thesis
,
University of Michigan, Ann Arbor, MI
.https://deepblue.lib.umich.edu/bitstream/handle/2027.42/60724/padamczy_1.pdf?sequence=1
13.
Collins
,
S. H.
, and
Kuo
,
A. D.
,
2010
, “
Recycling Energy to Restore Impaired Ankle Function During Human Walking
,”
PloS One
,
5
(
2
), p.
e9307
.10.1371/journal.pone.0009307
14.
Quraishi
,
H. A.
,
Shepherd
,
M. K.
,
McManus
,
L.
,
Harlaar
,
J.
,
Plettenburg
,
D. H.
, and
Rouse
,
E. J.
,
2021
, “
A Passive Mechanism for Decoupling Energy Storage and Return in Ankle–Foot Prostheses: A Case Study in Recycling Collision Energy
,”
Wearable Technol.
,
2
, p.
e9
.10.1017/wtc.2021.7
15.
Hansen
,
A. H.
,
Childress
,
D. S.
,
Miff
,
S. C.
,
Gard
,
S. A.
, and
Mesplay
,
K. P.
,
2004
, “
The Human Ankle During Walking: Implications for Design of Biomimetic Ankle Prostheses
,”
J. Biomech.
,
37
(
10
), pp.
1467
1474
.10.1016/j.jbiomech.2004.01.017
16.
Shamaei
,
K.
,
Sawicki
,
G. S.
, and
Dollar
,
A. M.
,
2013
, “
Estimation of Quasi-Stiffness and Propulsive Work of the Human Ankle in the Stance Phase of Walking
,”
PLoS ONE
,
8
(
3
), p.
e59935
.10.1371/journal.pone.0059935
17.
Collins
,
J. D.
,
Arch
,
E. S.
,
Crenshaw
,
J. R.
,
Bernhardt
,
K. A.
,
Khosla
,
S.
,
Amin
,
S.
, and
Kaufman
,
K. R.
,
2018
, “
Net Ankle Quasi-Stiffness is Influenced by Walking Speed but Not Age for Older Adult Women
,”
Gait Posture
,
62
, pp.
311
316
.10.1016/j.gaitpost.2018.03.031
18.
Clark
,
W. H.
, and
Franz
,
J. R.
,
2019
, “
Activation-Dependent Changes in Soleus Length–Tension Behavior Augment Ankle Joint Quasi-Stiffness
,”
J. Appl. Biomech.
,
35
(
3
), pp.
182
189
.10.1123/jab.2018-0297
19.
Rouse
,
E. J.
,
Hargrove
,
L. J.
,
Perreault
,
E. J.
, and
Kuiken
,
T. A.
,
2014
, “
Estimation of Human Ankle Impedance During the Stance Phase of Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
4
), pp.
870
878
.10.1109/TNSRE.2014.2307256
20.
Hogan
,
N.
,
1984
, “
Adaptive Control of Mechanical Impedance by Coactivation of Antagonist Muscles
,”
IEEE Trans. Autom. Control
,
29
(
8
), pp.
681
690
.10.1109/TAC.1984.1103644
21.
Shorter
,
A. L.
, and
Rouse
,
E. J.
,
2018
, “
Mechanical Impedance of the Ankle During the Terminal Stance Phase of Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
1
), pp.
135
143
.10.1109/TNSRE.2017.2758325
22.
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Knox
,
E. H.
,
2004
, “
Roll-Over Shapes of Human Locomotor Systems: Effects of Walking Speed
,”
Clin. Biomech.
,
19
(
4
), pp.
407
414
.10.1016/j.clinbiomech.2003.12.001
23.
Mitchell
,
M.
,
Kyberd
,
P. J.
, and
Biden
,
E.
,
2013
, “
A Study of the Rollover Shape in Unimpaired Persons
,”
J. Prosthet. Orthot.
,
25
(
3
), pp.
138
142
.10.1097/JPO.0b013e31829c1d31
24.
Hansen
,
A. H.
, and
Wang
,
C. C.
,
2010
, “
Effective Rocker Shapes Used by Able-Bodied Persons for Walking and Fore-Aft Swaying: Implications for Design of Ankle-Foot Prostheses
,”
Gait Posture
,
32
(
2
), pp.
181
184
.10.1016/j.gaitpost.2010.04.014
25.
Miff
,
S. C.
,
Hansen
,
A. H.
,
Childress
,
D. S.
,
Gard
,
S. A.
, and
Meier
,
M. R.
,
2008
, “
Roll-Over Shapes of the Able-Bodied Knee–Ankle–Foot System During Gait Initiation, Steady-State Walking, and Gait Termination
,”
Gait Posture
,
27
(
2
), pp.
316
322
.10.1016/j.gaitpost.2007.04.011
26.
Curtze
,
C.
,
Hof
,
A. L.
,
van Keeken
,
H. G.
,
Halbertsma
,
J. P. K.
,
Postema
,
K.
, and
Otten
,
B.
,
2009
, “
Comparative Roll-Over Analysis of Prosthetic Feet
,”
J. Biomech.
,
42
(
11
), pp.
1746
1753
.10.1016/j.jbiomech.2009.04.009
27.
Au
,
S. K.
, and
Herr
,
H. M.
,
2008
, “
Powered Ankle-Foot Prosthesis
,”
IEEE Robot. Autom. Mag.
,
15
(
3
), pp.
52
59
.10.1109/MRA.2008.927697
29.
Major
,
M. J.
,
Twiste
,
M.
,
Kenney
,
L. P. J.
, and
Howard
,
D.
,
2011
, “
Amputee Independent Prosthesis Properties—A New Model for Description and Measurement
,”
J. Biomech.
,
44
(
14
), pp.
2572
2575
.10.1016/j.jbiomech.2011.07.016
30.
Adamczyk
,
P. G.
,
Roland
,
M.
,
Hahn
,
M. E.
, and
Hahn
,
M. E.
,
2017
, “
Sensitivity of Biomechanical Outcomes to Independent Variations of Hindfoot and Forefoot Stiffness in Foot Prostheses
,”
Hum. Mov. Sci.
,
54
, pp.
154
171
.10.1016/j.humov.2017.04.005
31.
Adamczyk
,
P. G.
,
2020
, “
Ankle Control in Walking and Running: Speed- and Gait-Related Changes in Dynamic Mean Ankle Moment Arm
,”
ASME J. Biomech. Eng.
,
142
(
7
), p.
071007
.10.1115/1.4045817
32.
Leestma
,
J. K.
,
Fehr
,
K. H.
, and
Adamczyk
,
P. G.
,
2021
, “
Adapting Semi-Active Prostheses to Real-World Movements: Sensing and Controlling the Dynamic Mean Ankle Moment Arm With a Variable-Stiffness Foot on Ramps and Stairs
,”
Sensors
,
21
(
18
), p.
6009
.10.3390/s21186009
33.
Chatzistergos
,
P. E.
,
Gatt
,
A.
,
Formosa
,
C.
,
Farrugia
,
K.
, and
Chockalingam
,
N.
,
2020
, “
Optimised Cushioning in Diabetic Footwear Can Significantly Enhance Their Capacity to Reduce Plantar Pressure
,”
Gait Posture
,
79
, pp.
244
250
.10.1016/j.gaitpost.2020.05.009
34.
Zwaferink
,
J. B. J.
,
Custers
,
W.
,
Paardekooper
,
I.
,
Berendsen
,
H. A.
, and
Bus
,
S. A.
,
2021
, “
Effect of a Carbon Reinforcement for Maximizing Shoe Outsole Bending Stiffness on Plantar Pressure and Walking Comfort in People With Diabetes at High Risk of Foot Ulceration
,”
Gait Posture
,
86
, pp.
341
345
.10.1016/j.gaitpost.2021.04.010
35.
Grimmer
,
M.
,
Elshamanhory
,
A. A.
, and
Beckerle
,
P.
,
2020
, “
Human Lower Limb Joint Biomechanics in Daily Life Activities: A Literature Based Requirement Analysis for Anthropomorphic Robot Design
,”
Front. Robot. AI
,
7
, p.
13
.10.3389/frobt.2020.00013
36.
Kuster
,
M.
,
Sakurai
,
S.
, and
Wood
,
G. A.
,
1995
, “
Kinematic and Kinetic Comparison of Downhill and Level Walking
,”
Clin. Biomech.
,
10
(
2
), pp.
79
84
.10.1016/0268-0033(95)92043-L
37.
Lay
,
A. N.
,
Hass
,
C. J.
, and
Gregor
,
R. J.
,
2006
, “
The Effects of Sloped Surfaces on Locomotion: A Kinematic and Kinetic Analysis
,”
J. Biomech.
,
39
(
9
), pp.
1621
1628
.10.1016/j.jbiomech.2005.05.005
38.
Montgomery
,
J. R.
, and
Grabowski
,
A. M.
,
2018
, “
The Contributions of Ankle, Knee and Hip Joint Work to Individual Leg Work Change During Uphill and Downhill Walking Over a Range of Speeds
,”
R. Soc. Open Sci.
,
5
(
8
), p.
180550
.10.1098/rsos.180550
39.
Lehr
,
R.
,
1992
, “
Sixteen S-Squared Over D-Squared: A Relation for Crude Sample Size Estimates
,”
Stat. Med.
,
11
(
8
), pp.
1099
1102
.10.1002/sim.4780110811
40.
Kumle
,
L.
,
,
M. L.-H.
, and
Draschkow
,
D.
,
2021
, “
Estimating Power in (Generalized) Linear Mixed Models: An Open Introduction and Tutorial in R
,”
Behav. Res. Methods
,
53
(
6
), pp.
2528
2543
.10.3758/s13428-021-01546-0
41.
Kumle
,
L.
,
,
M.
, and
Draschkow
,
D.
,
2018
, “
Mixedpower: A Library for Estimating Simulation-Based Power for Mixed Models in R
,” Comput. Softw. Httpsgithub ComDejanDraschkowmixedpower.https://zenodo.org/records/1341048
42.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
, and
Wootten
,
M. E.
,
1990
, “
Measurement of Lower Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
,
8
(
3
), pp.
383
392
.10.1002/jor.1100080310
43.
Bates
,
D.
,
Mächler
,
M.
,
Bolker
,
B.
, and
Walker
,
S.
,
2015
, “
Fitting Linear Mixed-Effects Models Using lme4
,”
J. Stat. Software
,
67
(
1
), pp.
1
48
.10.18637/jss.v067.i01
44.
Nakagawa
,
S.
,
Johnson
,
P. C. D.
, and
Schielzeth
,
H.
,
2017
, “
The Coefficient of Determination R2 and Intra-Class Correlation Coefficient From Generalized Linear Mixed-Effects Models Revisited and Expanded
,”
J. R. Soc. Interface
,
14
(
134
), p.
20170213
.10.1098/rsif.2017.0213
45.
R Core Team
,
2022
,
R: A Language and Environment for Statistical Computing
, R Core Team,
Vienna, Austria
.
46.
Winter
,
D. A.
,
1987
,
The Biomechanics and Motor Control of Human Gait
,
University of Waterloo Press
,
Waterloo, ON, Canada
.
47.
Stansfield
,
B. W.
,
Hillman
,
S. J.
,
Hazlewood
,
M. E.
,
Lawson
,
A. A.
,
Mann
,
A. M.
,
Loudon
,
I. R.
, and
Robb
,
J. E.
,
2001
, “
Sagittal Joint Kinematics, Moments, and Powers Are Predominantly Characterized by Speed of Progression, Not Age, in Normal Children
,”
J. Pediatr. Orthop.
,
21
(
3
), pp.
403
411
.10.1097/01241398-200105000-00027
48.
Orendurff
,
M. S.
,
Bernatz
,
G. C.
,
Schoen
,
J. A.
, and
Klute
,
G. K.
,
2008
, “
Kinetic Mechanisms to Alter Walking Speed
,”
Gait Posture
,
27
(
4
), pp.
603
610
.10.1016/j.gaitpost.2007.08.004
49.
Peterson
,
C. L.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2011
, “
Braking and Propulsive Impulses Increase With Speed During Accelerated and Decelerated Walking
,”
Gait Posture
,
33
(
4
), pp.
562
567
.10.1016/j.gaitpost.2011.01.010
50.
Harper
,
S. E.
,
Roembke
,
R. A.
,
Zunker
,
J. D.
,
Thelen
,
D. G.
, and
Adamczyk
,
P. G.
,
2020
, “
Wearable Tendon Kinetics
,”
Sensors
,
20
(
17
), p.
4805
.10.3390/s20174805
51.
Silder
,
A.
,
Besier
,
T. F.
, and
Delp
,
S. L.
,
2012
, “
Predicting the Metabolic Cost of Incline Walking From Muscle Activity and Walking Mechanics
,”
J. Biomech.
,
45
(
10
), pp.
1842
1849
.10.1016/j.jbiomech.2012.03.032
52.
Protopapadaki
,
A.
,
Drechsler
,
W. I.
,
Cramp
,
M. C.
,
Coutts
,
F. J.
, and
Scott
,
O. M.
,
2007
, “
Hip, Knee, Ankle Kinematics and Kinetics During Stair Ascent and Descent in Healthy Young Individuals
,”
Clin. Biomech.
,
22
(
2
), pp.
203
210
.10.1016/j.clinbiomech.2006.09.010
53.
McFadyen
,
B. J.
, and
Winter
,
D. A.
,
1988
, “
An Integrated Biomechanical Analysis of Normal Stair Ascent and Descent
,”
J. Biomech.
,
21
(
9
), pp.
733
744
.10.1016/0021-9290(88)90282-5
54.
Riener
,
R.
,
Rabuffetti
,
M.
, and
Frigo
,
C.
,
2002
, “
Stair Ascent and Descent at Different Inclinations
,”
Gait Posture
,
15
(
1
), pp.
32
44
.10.1016/S0966-6362(01)00162-X
55.
Lan
,
J.
,
Zhang
,
J.
,
Park
,
H.
,
Fu
,
C.
, and
Chen
,
K.
,
2019
, “
Biomechanical Analysis in the Sagittal Plane at Different Walking Speeds During Stair Climbing
,” 2019 IEEE International Conference on Advanced Robotics and Its Social Impacts (
ARSO
), Beijing, China, Oct. 31–Nov. 2, pp.
57
60
.10.1109/ARSO46408.2019.8948774
56.
Lewis
,
J.
,
Freisinger
,
G.
,
Pan
,
X.
,
Siston
,
R.
,
Schmitt
,
L.
, and
Chaudhari
,
A.
,
2015
, “
Changes in Lower Extremity Peak Angles, Moments and Muscle Activations During Stair Climbing at Different Speeds
,”
J. Electromyogr. Kinesiol.
,
25
(
6
), pp.
982
989
.10.1016/j.jelekin.2015.07.011
57.
Smith
,
R. H.
,
2002
, “
Traction Considerations During Stairway Descent
,”
Proceedings of Human Factors and Ergonomics Society Annual Meeting
, SAGE Publications, Los Angeles, CA, Vol.
46
(
10
), pp.
910
914
.10.1177/154193120204601007
58.
Reid
,
S. M.
,
Lynn
,
S. K.
,
Musselman
,
R. P.
, and
Costigan
,
P. A.
,
2007
, “
Knee Biomechanics of Alternate Stair Ambulation Patterns
,”
Med. Sci. Sports Exercise
,
39
(
11
), pp.
2005
2011
.10.1249/mss.0b013e31814538c8
59.
Collins
,
S. H.
,
Adamczyk
,
P. G.
,
Ferris
,
D. P.
, and
Kuo
,
A. D.
,
2009
, “
A Simple Method for Calibrating Force Plates and Force Treadmills Using an Instrumented Pole
,”
Gait Posture
,
29
(
1
), pp.
59
64
.10.1016/j.gaitpost.2008.06.010
60.
Strutzenberger
,
G.
,
Claußen
,
L.
, and
Schwameder
,
H.
,
2021
, “
Analysis of Sloped Gait: How Many Steps Are Needed to Reach Steady-State Walking Speed After Gait Initiation?
,”
Gait Posture
,
83
, pp.
167
173
.10.1016/j.gaitpost.2020.09.030
61.
Harper
,
S. E.
,
Schmitz
,
D. G.
,
Adamczyk
,
P. G.
, and
Thelen
,
D. G.
,
2022
, “
Fusion of Wearable Kinetic and Kinematic Sensors to Estimate Triceps Surae Work During Outdoor Locomotion on Slopes
,”
Sensors
,
22
(
4
), p.
1589
.10.3390/s22041589
You do not currently have access to this content.