Abstract

Design projects, particularly those related to assistive technology, offer unparalleled educational opportunities for undergraduate students to synthesize engineering knowledge with a clinically driven need to produce a product that can improve quality of life. Such projects are most effective when engineering, clinical, and business perspectives are considered throughout. However, the logistics of successfully implementing such interdisciplinary projects can be challenging. This paper presents an auto-ethnography of 12 undergraduate design team projects in assistive technology performed by 87 students from five majors (including engineering, business, and clinical students) over the course of 5 years. The overarching goal of our work was to establish an undergraduate integrated design experience at a university in the absence of a dedicated biomedical engineering major. The focus of this experience was to foster the creation of student-led prototypes to address real-world problems for people with disabilities while keeping commercialization potential at the forefront throughout. Student participation demonstrated a clear enthusiasm for completing biomedical engineering-themed projects. To encourage the implementation of similar approaches at universities where a biomedical engineering major does not exist, we identify common obstacles that can arise and present strategies for mitigating these challenges, as well as effective approaches for catalyzing cross-disciplinary collaborations. High impact practices include close involvement of end-users in the design process; cross-disciplinary team composition (e.g., engineering, business, and health sciences students); and choosing cross-disciplinary leads for project management. Teams experienced a high degree of success with all 12 teams producing functional prototypes. We conclude that at universities that do not offer a biomedical engineering major, health-focused integrated design experiences offer students important interdisciplinary perspectives, including a holistic approach to project implementation. Furthermore, for many students, these projects ultimately served as a gateway to subsequent careers and graduate study in biomedical engineering.

References

1.
Lemley
,
E.
,
Jassemnejad
,
B.
,
Mounce
,
M.
,
Weber
,
J.
,
Rai
,
S.
,
Duffle
,
W.
,
Haubrich
,
J.
, and
Taheri
,
B.
,
2010
, “
Linking Senior Design Projects to Research Projects
,”
ASEE Annual Conference and Exposition
, Louisville, KY, June 20–23,
p.
8
.https://peer.asee.org/linking-senior-design-projects-to-research-projects.pdf
2.
Berry
,
J. L.
,
Noles
,
K.
,
Eberhardt
,
A.
, and
Wingo
,
N.
,
2019
, “
Accelerating Clinical Innovation in Biomedical Engineering Education by Using a Digital Portal for Collaboration
,”
ASME J. Biomech. Eng.
,
141
(
12
), p.
121003
.10.1115/1.4045089
3.
McCullough
,
M.
,
Msafiri
,
N.
,
Richardson
,
W. J.
,
Harman
,
M. K.
,
DesJardins
,
J. D.
, and
Dean
,
D.
,
2019
, “
Development of a Global Design Education Experience in Bioengineering Through International Partnerships
,”
ASME J. Biomech. Eng.
,
141
(
12
), p.
124503
.10.1115/1.4045112
4.
Grimm
,
M. J.
,
2020
, “
Design as a Feature of Biomedical Engineering Education-Satisfying ABET and Preparing Students to Address Clinical Needs
,”
ASME J. Biomech. Eng.
,
142
(
11
), p.
110802
.10.1115/1.4047219
5.
Tanaka
,
M. L.
, and
Fischer
,
K. J.
,
2016
, “
Structure and Management of an Engineering Senior Design Course
,”
ASME J. Biomech. Eng.
,
138
(
7
), p.
070802
.10.1115/1.4033583
6.
Krishnan
,
S.
,
2013
, “
Promoting Interdisciplinary Project-Based Learning to Build the Skill Sets for Research and Development of Medical Devices in Academia
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Osaka, Japan, July 3–7, pp.
3142
3145
.10.1109/EMBC.2013.6610207
7.
Eberhardt
,
A. W.
,
Johnson
,
O. L.
,
Kirkland
,
W. B.
,
Dobbs
,
J. H.
, and
Moradi
,
L. G.
,
2016
, “
Team-Based Development of Medical Devices: An Engineering-Business Collaborative
,”
ASME J. Biomech. Eng.
,
138
(
7
), p.
070803
.10.1115/1.4032805
8.
Chien
,
S.
,
Bashir
,
R.
,
Nerem
,
R. M.
, and
Pettigrew
,
R.
,
2015
, “
Engineering as a New Frontier for Translational Medicine
,”
Sci. Transl. Med.
,
7
(
281
), p.
281fs213
.10.1126/scitranslmed.aaa4325
9.
Reyer
,
S.
,
Williams
,
S.
, and
Petersen
,
O.
,
2005
, “
Senior Design as a Transition From Academia to Industry
,”
ASEE Annual Conference and Exposition
, Portland, OR, June
12
15
.10.18260/1-2--14231
10.
Crabtree
,
R. A.
,
Fox
,
M. S.
, and
Baid
,
N. K.
,
1997
, “
Case Studies of Coordination Activities and Problems in Collaborative Design
,”
Res. Eng. Des.
,
9
(
2
), pp.
70
84
.10.1007/BF01596483
11.
Golecki
,
H. M.
,
Amos
,
J. R.
, and
Bradley
,
J.
,
2023
, “
Designing Capstone Experiences for Interdisciplinarity in Biomedical Engineering Education
,”
ASEE Annual Conference and Exposition,
Baltimore, MD, June 25–28
.10.18260/1-2--42977
12.
Augustin
,
D. A.
,
Yock
,
C. A.
,
Wall
,
J.
,
Lucian
,
L.
,
Krummel
,
T.
,
Pietzsch
,
J. B.
, and
Azagury
,
D. E.
,
2020
, “
Stanford's Biodesign Innovation Program: Teaching Opportunities for Value-Driven Innovation in Surgery
,”
Surgery
,
167
(
3
), pp.
535
539
.10.1016/j.surg.2019.10.012
13.
Yock
,
P. G.
,
Zenios
,
S.
,
Makower
,
J.
,
Brinton
,
T. J.
,
Kumar
,
U. N.
,
Watkins
,
F. T. J.
,
Denend
,
L.
,
Krummel
,
T. M.
, and
Kurihara
,
C. Q.
,
2015
,
Biodesign: The Process of Innovating Medical Technologies
,
Cambridge University Press
,
Cambridge, UK
.
14.
Trellinger
,
P. N.
,
Buswell
,
Buswell
,
N. T.
, and
Walter
,
D. M. E.
,
2019
, “
Designing Senior Design for Student-Led Projects With Large Enrollments
,”
ASEE Annual Conference and Exposition
, Tampa, FL, June
16
19
.https://peer.asee.org/designing-senior-design-forstudent-led-projects-with-large-enrollments.pdf
15.
Tuttle
,
T. G.
, and
Erath
,
B. D.
,
2017
, “
Design and Evaluation of a Mechanically Driven Artificial Speech Device
,”
ASME J. Med. Devices
,
12
(
1
), p.
011002
.10.1115/1.4038222
16.
Denning
,
S. K.
,
Valleau
,
M. A.
,
Pelowski
,
W. J.
,
Chaisson
,
C. M.
,
Grimes
,
K. E.
, and
Erath
,
B. D.
,
2021
, “
An Automatic Water-Occluding Device to Enable Laryngectomee Participation in Water Activities
,”
PLoS One
,
16
(
9
), p.
e0257463
.10.1371/journal.pone.0257463
17.
Davis
,
B. G.
,
Shea
,
M.
, and
Kuxhaus
,
L.
,
2018
, “
DART Brace: A Custom Solution for Early Mobilization
,”
ORS Northeast Regional Symposium, Rochester, NY, July 27–28
.
18.
Crady
,
S. D.
,
Drapeau
,
K. E.
,
Piersall
,
T. C.
,
Cassady
,
E. A.
,
Weisner
,
A. A.
,
Robinson
,
D. A.
,
Kuxhaus
,
L.
,
Fite
,
K.
,
Priganc
,
V.
,
LaRue
,
J.
, and
Kelso
,
M.
,
2017
, “
Wearable Rehabilitation: A Customizable Continuous Passive Motion Device for Early Phalangeal Mobilization
,”
Summer Biomechanics, Bioengineering, and Biotransport Conference, Tucson, AZ, June 21–24.
19.
Bertocchi
,
A.
,
Chrzan
,
B. P.
,
Doerfler
,
B. N.
,
Fenoff
,
T. M.
,
Hambrose
,
G. J.
,
Kudlacik
,
C. L.
,
Slocum
,
K.
,
Hawley
,
B. L.
, and
Kuxhaus
,
L.
,
2018
, “
Skis and Treads: Products to Promote Independence for Manual Wheelchair Users in Winter Conditions
,”
World Congress of Biomechanics, Dublin, Ireland, July 8–12.
20.
Anderson
,
A. D.
, II
,
Bosquet
,
B.
,
Curry
,
M. M.
,
Davis
,
B. G.
,
Pelton
,
C. R.
,
Robinson
,
C.
,
Kuxhaus
,
L.
,
Shea
,
M.
, and
Priganc
,
V.
,
2017
, “
DART Brace: Daily Advanced Range of Motion Therapy for Maximizing Function
,”
Summer Biomechanics, Bioengineering, and Biotransport Conference, Tucson, AZ, June 21–24.
21.
Brindisi
,
T.
,
Costanzo
,
N.
,
Griffin
,
M.
,
Jacques
,
J.
,
Kwiek
,
T.
,
Macko
,
D.
,
McGuffey
,
M.
,
Miele
,
E.
,
Starr
,
N.
,
Whelley
,
M.
,
Sha
,
T.
, and
Fite
,
K.
,
2018
, “
Development of a Partial-Hand Prosthesis for Pediatric Amputees
,”
World Congress of Biomechanics, Dublin, Ireland, July 8–12.
22.
D'Ambrosio
,
N.
,
Haltermann
,
M.
,
Mitchell
,
A.
,
Tamura
,
K.
,
Van Herwarde
,
K.
, and
Erath
,
B. D.
,
2017
, “
Coughing for Better Health: A Prosthesis to Aid in Sputum Expectoration in Laryngectomees
,”
Summer Biomechanics, Bioengineering, and Biotransport Conference, Tucson, AZ, June 21–24.
23.
Chaisson
,
C. M.
,
Denning
,
S. K.
,
Grimes
,
K. E.
,
Pelowski
,
W. J.
,
Valleau
,
M. A.
, and
Erath
,
B. D.
,
2019
, “
Creating the Storkel: A Water Occluding Device for Accidental Submersion With a Tracheostoma
,”
The Summer Bioengineering, Biomechanics, and Biotransport Conference (Virtual), June 17–20.
24.
Baldwin
,
M. R.
,
Kaminiski
,
K. A.
,
Hrdina
,
J. A.
,
Cody
,
E. T.
,
Gillespie
,
E. A.
,
Tuttle
,
T. G.
, and
Erath
,
B. D.
,
2016
, “
Substitute Voice Production Via a Mechanically-Driven Artificial Larynx
,”
Summer Biomechanics, Bioengineering, and Biotransport Conference National, Harbor, MD, June 29–July 2.
25.
Shea
,
M.
,
Davis
,
B. G.
,
Priganc
,
V.
, and
Kuxhaus
,
L.
,
2018
, “
Design, Validation, and Functional Testing of a Limited-Motion Wrist Brace
,”
World Congress of Biomechanics, Dublin, Ireland, July 8–12.
26.
Barber
,
A.
,
Eaton
,
E.
,
Farmer
,
J.
,
Gladd
,
S.
,
Jagelski
,
N.
, and
Lin
,
J.
,
2019
, “
Assistive Device for Muscular Degeneration in the Upper Arm
,”
The Summer Bioengineering, Biomechanics, and Biotransport Conference
, Seven Springs, PA, June
25
28
.
27.
DeRidder
,
M. E.
,
Freeman
,
D. A.
,
McCann
,
M. A.
,
Russ
,
J. A.
,
Stewart
,
M. E.
, and
Erath
,
B. D.
,
2020
, “
Stoma Submersion Security: A Precautionary Device for Accidental Water Submersion
,”
Summer Bioengineering, Biomechanics, and Biotransport Conference (Virtual), June 17–20.
28.
Korth
,
H.
,
Martin
,
R.
,
Murphy
,
M.
,
Reed
,
C.
,
Sergeant
,
K.
,
Williams
,
C.
, and
Fite
,
K.
,
2020
, “
Adaptations of a Hockey Glove to Enhance Prismatic Prehensile Grasp for a User With Congenital Hand Impairments
,”
Summer Biomechanics, Bioengineering, and Biotransport Conference (Virtual), June 17–20.
29.
Loughry
,
M. L.
,
Ohland
,
M. W.
, and
Woehr
,
D. J.
,
2014
, “
Assessing Teamwork Skills for Assurance of Learning Using CATME Team Tools
,”
J. Mark. Educ.
,
36
(
1
), pp.
5
19
.10.1177/0273475313499023
30.
Layton
,
R. A.
,
Loughry
,
M. L.
,
Ohland
,
M. W.
, and
Ricco
,
G. D.
,
2010
, “
Design and Validation of a Web-Based System for Assigning Members to Teams Using Instructor-Specified Criteria
,”
Adv. Eng. Educ.
,
2
(
1
), pp.
1
28
.https://advances.asee.org/publication/design-and-validation-of-a-web-based-system-for-assigning-members-toteams-using-instructor-specified-criteria/
31.
Miller
,
I.
,
Lamer
,
S.
,
Brougham-Cook
,
A.
,
Jensen
,
K. J.
, and
Golecki
,
H. M.
,
2022
, “
Development and Implementation of a Biometrics Device Design Project in an Introductory BME Course to Support Student Wellness
,”
Biomed. Eng. Educ.
,
2
(
1
), pp.
75
82
.10.1007/s43683-021-00060-1
32.
George
,
S. M.
, and
Domire
,
Z. J.
,
2020
, “
A Six-Year Review of the Biomedical Engineering in Simulations, Imaging, and Modeling Undergraduate Research Experience
,”
ASME J. Biomech. Eng.
,
142
(
11
), p.
111012
.10.1115/1.4047630
33.
NASEM
,
2017
,
Research Experiences for STEM Students: Successes, Challenges, and Opportunities
,
The National Academies Press
,
Washington, DC
.
34.
Zhu
,
L.
,
Eggleton
,
C.
,
Ma
,
R.
,
Topoleski
,
L. D. T.
, and
Madan
,
D.
,
2020
, “
Establishing the Need to Broaden Bioengineering Research Exposure and Research Participation in Mechanical Engineering and Its Positive Impacts on Student Recruitment, Diversification, Retention and Graduation: Findings From the UMBC ME S-STEM Scholarship Program
,”
ASME J. Biomech. Eng.
,
142
(
11
), p.
111010
.10.1115/1.4047839
35.
NSF
, “
NSF 23-601: Research Experiences for Undergraduates (REU)
,” U.S. National Science Foundation, Alexandria, VA, accessed Aug. 5, 2023, https://new.nsf.gov/funding/opportunities/research-experiences-undergraduates-reu
36.
National Science Board
,
2020
,
Vision 2030
,
National Science Foundation
, Alexandria, VA.
You do not currently have access to this content.