Abstract

The last decade has seen the emergence of progressively more complex mechanobiological models, often coupling biochemical and biomechanical components. The complexity of these models makes interpretation difficult, and although computational tools can solve model equations, there is considerable potential value in a simple method to explore the interplay between different model components. Pump and system performance curves, long utilized in centrifugal pump selection and design, inspire the development of a graphical technique to depict visually the performance of biochemically-coupled mechanical models. Our approach is based on a biochemical performance curve (analogous to the classical pump curve) and a biomechanical performance curve (analogous to the system curve). Upon construction of the two curves, their intersection, or lack thereof, describes the coupled model's equilibrium state(s). One can also observe graphically how an applied perturbation shifts one or both curves, and thus how the other component will respond, without rerunning the full model. While the upfront cost of generating the performance curve graphic varies with the efficiency of the model components, the easily interpretable visual depiction of what would otherwise be nonintuitive model behavior is valuable. Herein, we outline how performance curves can be constructed and interpreted for biochemically-coupled biomechanical models and apply the technique to two independent models in the cardiovascular space. The performance curve approach can illustrate and help identify weaknesses in model construction, inform user-applied perturbations and fitting procedures to generate intended behaviors, and improve the efficiency of the model generation and application process.

Graphical Abstract Figure

Pump Curve Example Fig Full

Graphical Abstract Figure

Pump Curve Example Fig Full

Close modal

References

1.
Flanary
,
S. M.
, and
Barocas
,
V. H.
,
2023
, “
A Structural Bio-Chemo-Mechanical Model for Vascular Smooth Muscle Cell Traction Force Microscopy
,”
Biomech. Model. Mechanobiol.
, 22(4), pp.
1
18
.10.1007/s10237-023-01713-6
2.
Flanary
,
S. M.
,
Jo
,
S.
,
Ravichandran
,
R.
,
Alejandro
,
E. U.
, and
Barocas
,
V. H.
,
2023
, “
A Computational Bridge Between Traction Force Microscopy and Tissue Contraction
,”
J. Appl. Phys.
,
134
(
7
), p.
074901
.10.1063/5.0157507
3.
Estrada
,
A. C.
,
Yoshida
,
K.
,
Saucerman
,
J. J.
, and
Holmes
,
J. W.
,
2021
, “
A Multiscale Model of Cardiac Concentric Hypertrophy Incorporating Both Mechanical and Hormonal Drivers of Growth
,”
Biomech. Model. Mechanobiol.
,
20
(
1
), pp.
293
307
.10.1007/s10237-020-01385-6
4.
Irons
,
L.
,
Latorre
,
M.
, and
Humphrey
,
J. D.
,
2021
, “
From Transcript to Tissue: Multiscale Modeling From Cell Signaling to Matrix Remodeling
,”
Ann. Biomed. Eng.
,
49
(
7
), pp.
1701
1715
.10.1007/s10439-020-02713-8
5.
Yoshida
,
K.
,
Saucerman
,
J. J.
, and
Holmes
,
J. W.
,
2022
, “
Multiscale Model of Heart Growth During Pregnancy: Integrating Mechanical and Hormonal Signaling
,”
Biomech. Model. Mechanobiol.
,
21
(
4
), pp.
1267
1283
.10.1007/s10237-022-01589-y
6.
Rikard
,
S. M.
,
Athey
,
T. L.
,
Nelson
,
A. R.
,
Christiansen
,
S. L. M.
,
Lee
,
J.-J.
,
Holmes
,
J. W.
,
Peirce
,
S. M.
, and
Saucerman
,
J. J.
,
2019
, “
Multiscale Coupling of an Agent-Based Model of Tissue Fibrosis and a Logic-Based Model of Intracellular Signaling
,”
Front. Physiol.
,
10
, p.
1481
.10.3389/fphys.2019.01481
7.
Eggertsen
,
T. G.
, and
Saucerman
,
J. J.
,
2023
, “
Virtual Drug Screen Reveals Context‐Dependent Inhibition of Cardiomyocyte Hypertrophy
,”
Br. J. Pharmacol.
,
180
(
21
), pp.
2721
2735
.10.1111/bph.16163
8.
Zeigler
,
A. C.
,
Chandrabhatla
,
A. S.
,
Christiansen
,
S. L.
,
Nelson
,
A. R.
,
Holmes
,
J. W.
, and
Saucerman
,
J. J.
,
2021
, “
Network Model‐Based Screen for FDA‐Approved Drugs Affecting Cardiac Fibrosis
,”
CPT: Pharmacometrics Syst. Pharmacol.
,
10
(
4
), pp.
377
388
.10.1002/psp4.12599
9.
Zeigler
,
A. C.
,
Richardson
,
W. J.
,
Holmes
,
J. W.
, and
Saucerman
,
J. J.
,
2016
, “
A Computational Model of Cardiac Fibroblast Signaling Predicts Context-Dependent Drivers of Myofibroblast Differentiation
,”
J. Mol. Cell. Cardiol.
,
94
, pp.
72
81
.10.1016/j.yjmcc.2016.03.008
10.
Kraeutler
,
M. J.
,
Soltis
,
A. R.
, and
Saucerman
,
J. J.
,
2010
, “
Modeling Cardiac β-Adrenergic Signaling With Normalized-Hill Differential Equations: Comparison With a Biochemical Model
,”
BMC Syst. Biol.
,
4
(
1
), p.
157
.10.1186/1752-0509-4-157
11.
Ryall
,
K. A.
,
Holland
,
D. O.
,
Delaney
,
K. A.
,
Kraeutler
,
M. J.
,
Parker
,
A. J.
, and
Saucerman
,
J. J.
,
2012
, “
Network Reconstruction and Systems Analysis of Cardiac Myocyte Hypertrophy Signaling*
,”
J. Biol. Chem.
,
287
(
50
), pp.
42259
42268
.10.1074/jbc.M112.382937
12.
Ryall
,
K. A.
, and
Tan
,
A. C.
,
2015
, “
Systems Biology Approaches for Advancing the Discovery of Effective Drug Combinations
,”
J. Cheminf.
,
7
(
1
), p.
7
.10.1186/s13321-015-0055-9
13.
Mackay
,
R. C.
,
2004
, “
Chapter 3: System Hydraulics
,”
The Practical Pumping Handbook
,
Elsevier Advanced Technology
,
Amsterdam, The Netherlands
, pp.
31
52
.
14.
Mackay
,
R. C.
,
2004
, “
Chapter 2: Pump Hydraulics
,”
The Practical Pumping Handbook
,
Elsevier Advanced Technology
,
Oxford, UK
, pp.
15
30
.
15.
Porter
,
L.
,
Minaisah
,
R.-M.
,
Ahmed
,
S.
,
Ali
,
S.
,
Norton
,
R.
,
Zhang
,
Q.
,
Ferraro
,
E.
, et al.,
2020
, “
SUN1/2 Are Essential for RhoA/ROCK-Regulated Actomyosin Activity in Isolated Vascular Smooth Muscle Cells
,”
Cells
,
9
(
1
), p.
132
.10.3390/cells9010132
16.
Win
,
Z.
,
Buksa
,
J. M.
,
Steucke
,
K. E.
,
Luxton
,
G. W. G.
,
Barocas
,
V. H.
, and
Alford
,
P. W.
,
2017
, “
Cellular Microbiaxial Stretching to Measure a Single-Cell Strain Energy Density Function
,”
ASME J. Biomech. Eng.
,
139
(
7
), p.
071006
.10.1115/1.4036440
17.
Huynh
,
J.
,
Bordeleau
,
F.
,
Kraning-Rush
,
C. M.
, and
Reinhart-King
,
C. A.
,
2013
, “
Substrate Stiffness Regulates PDGF-Induced Circular Dorsal Ruffle Formation Through MLCK
,”
Cell. Mol. Bioeng.
,
6
(
2
), pp.
138
147
.10.1007/s12195-013-0278-7
18.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
,
1994
, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
,
27
(
4
), pp.
455
467
.10.1016/0021-9290(94)90021-3
19.
Holmes
,
J. W.
,
2004
, “
Candidate Mechanical Stimuli for Hypertrophy During Volume Overload
,”
J. Appl. Physiol.
,
97
(
4
), pp.
1453
1460
.10.1152/japplphysiol.00834.2003
20.
Griffin
,
S. A.
,
Brown
,
W. C.
,
MacPherson
,
F.
,
McGrath
,
J. C.
,
Wilson
,
V. G.
,
Korsgaard
,
N.
,
Mulvany
,
M. J.
, and
Lever
,
A. F.
,
2018
, “
Angiotensin II Causes Vascular Hypertrophy in Part by a Non-Pressor Mechanism
,”
Hypertension
,
17
(
5
), pp.
626
635
.10.1161/01.HYP.17.5.626
21.
Belabbas
,
H.
,
Zalvidea
,
S.
,
Casellas
,
D.
,
Molès
,
J.-P.
,
Galbes
,
O.
,
Mercier
,
J.
, and
Jover
,
B.
,
2008
, “
Contrasting Effect of Exercise and Angiotensin II Hypertension on In Vivo and In Vitro Cardiac Angiogenesis in Rats
,”
Am. J. Physiol.-Regul., Integr. Comp. Physiol.
,
295
(
5
), pp.
R1512
R1518
.10.1152/ajpregu.00014.2008
22.
Dostal
,
D. E.
, and
Baker
,
K. M.
,
1992
, “
Angiotensin II Stimulation of Left Ventricular Hypertrophy in Adult Rat Heart
,”
Am. J. Hypertens.
,
5
(
5_Pt_1
), pp.
276
280
.10.1093/ajh/5.5.276
23.
Zhang
,
X.
,
Meng
,
F.
,
Song
,
J.
,
Zhang
,
L.
,
Wang
,
J.
,
Li
,
D.
,
Li
,
L.
,
Dong
,
P.
,
Yang
,
B.
, and
Chen
,
Y.
,
2016
, “
Pentoxifylline Ameliorates Cardiac Fibrosis, Pathological Hypertrophy, and Cardiac Dysfunction in Angiotensin II-Induced Hypertensive Rats
,”
J. Cardiovasc. Pharmacol.
,
67
(
1
), pp.
76
85
.10.1097/FJC.0000000000000316
24.
Zhang
,
L.
,
Deng
,
M.
,
Lu
,
A.
,
Chen
,
Y.
,
Chen
,
Y.
,
Wu
,
C.
,
Tan
,
Z.
,
Boini
,
K. M.
,
Yang
,
T.
,
Zhu
,
Q.
, and
Wang
,
L.
,
2019
, “
Sodium Butyrate Attenuates Angiotensin II‐Induced Cardiac Hypertrophy by Inhibiting COX2/PGE2 Pathway Via a HDAC5/HDAC6‐Dependent Mechanism
,”
J. Cell. Mol. Med.
,
23
(
12
), pp.
8139
8150
.10.1111/jcmm.14684
25.
Fujioka
,
S.
,
Sasakawa
,
O.
,
Kishimoto
,
H.
,
Tsumura
,
K.
, and
Morii
,
H.
,
1991
, “
The Antihypertensive Effect of Calcitonin Gene-Related Peptide in Rats With Norepinephrine- and Angiotensin Ll-Induced Hypertension
,”
J. Hypertens.
,
9
(
2
), pp.
175
179
.10.1097/00004872-199102000-00013
26.
Nishiyama
,
A.
,
Fukui
,
T.
,
Fujisawa
,
Y.
,
Rahman
,
M.
,
Tian
,
R.-X.
,
Kimura
,
S.
, and
Abe
,
Y.
,
2001
, “
Systemic and Regional Hemodynamic Responses to Tempol in Angiotensin II–Infused Hypertensive Rats
,”
Hypertension
,
37
(
1
), pp.
77
83
.10.1161/01.HYP.37.1.77
27.
Pasquié
,
J. L.
,
Herizi
,
A.
,
Jover
,
B.
, and
Mimran
,
A.
,
1999
, “
Chronic Bradykinin Infusion and Receptor Blockade in Angiotensin II Hypertension in Rats
,”
Hypertension
,
33
(
3
), pp.
830
834
.10.1161/01.HYP.33.3.830
28.
Ruzicka
,
M.
, and
Leenen
,
F. H. H.
,
1995
, “
Relevance of Blockade of Cardiac and Circulatory Angiotensin-Converting Enzyme for the Prevention of Volume Overload–Induced Cardiac Hypertrophy
,”
Circulation
,
91
(
1
), pp.
16
19
.10.1161/01.CIR.91.1.16
29.
Taber
,
L. A.
,
1998
, “
A Model for Aortic Growth Based on Fluid Shear and Fiber Stresses
,”
ASME J. Biomech. Eng.
,
120
(
3
), pp.
348
354
.10.1115/1.2798001
30.
Wang
,
A.
,
Cao
,
S.
,
Aboelkassem
,
Y.
, and
Valdez-Jasso
,
D.
,
2020
, “
Quantification of Uncertainty in a New Network Model of Pulmonary Arterial Adventitial Fibroblast Pro-Fibrotic Signalling
,”
Philos. Trans. R. Soc. A
,
378
(
2173
), p.
20190338
.10.1098/rsta.2019.0338
31.
Cao
,
S.
,
Aboelkassem
,
Y.
,
Wang
,
A.
,
Valdez-Jasso
,
D.
,
Saucerman
,
J. J.
,
Omens
,
J. H.
, and
McCulloch
,
A. D.
,
2020
, “
Quantification of Model and Data Uncertainty in a Network Analysis of Cardiac Myocyte Mechanosignalling
,”
Philos. Trans. R. Soc. A
,
378
(
2173
), p.
20190336
.10.1098/rsta.2019.0336
You do not currently have access to this content.