Abstract

The stress–strain curve of biological soft tissues helps characterize their mechanical behavior. The yield point on this curve is when a specimen breaches its elastic range due to irreversible microstructural damage. The yield point is easily found using the offset yield method in traditional engineering materials. However, correctly identifying the yield point in soft tissues can be subjective due to its nonlinear material behavior. The typical method for yield point identification is visual inspection, which is investigator-dependent and does not lend itself to automation of the analysis pipeline. An automated algorithm to identify the yield point objectively assesses soft tissues' biomechanical properties. This study aimed to analyze data from uniaxial extension testing on biological soft tissue specimens and create a machine learning (ML) model to determine a tissue sample's yield point. We present a trained machine learning model from 279 uniaxial extension curves from testing aneurysmal/nonaneurysmal and longitudinal/circumferential oriented tissue specimens that multiple experts labeled through an adjudication process. The ML model showed a median error of 5% in its estimated yield stress compared to the expert picks. The study found that an ML model could accurately identify the yield point (as defined) in various aortic tissues. Future studies will be performed to validate this approach by visually inspecting when damage occurs and adjusting the model using the ML-based approach.

References

1.
Roylance
,
D.
,
2001
,
Stress-Strain Curves
,
Massachusetts Institute of Technology Study
,
Cambridge, UK
.
2.
Bain
,
E. C.
, and
Paxton
,
H. W.
,
1966
,
Alloying Elements in Steel
, 2nd, 3d ed.,
American Society for Metals, Meterials Park, OH
.
3.
Licup
,
A. J.
,
Münster
,
S.
,
Sharma
,
A.
,
Sheinman
,
M.
,
Jawerth
,
L. M.
,
Fabry
,
B.
,
Weitz
,
D. A.
, and
MacKintosh
,
F. C.
,
2015
, “
Stress Controls the Mechanics of Collagen Networks
,”
Proc. Natl. Acad. Sci. U. S. A
,
112
(
31
), pp.
9573
9578
.10.1073/pnas.1504258112
4.
Holzapfel
,
G. A.
,
2006
, “
Determination of Material Models for Arterial Walls From Uniaxial Extension Tests and Histological Structure
,”
J. Theor. Biol.
,
238
(
2
), pp.
290
302
.10.1016/j.jtbi.2005.05.006
5.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.10.1016/S0021-9290(99)00201-8
6.
He
,
C. M.
, and
Roach
,
M. R.
,
1994
, “
The Composition and Mechanical Properties of Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
20
(
1
), pp.
6
13
.10.1016/0741-5214(94)90169-4
7.
Raghavan
,
M. L.
,
Hanaoka
,
M. M.
,
Kratzberg
,
J. A.
,
Higuchi
,
M. D. L.
, and
da Silva
,
E. S.
,
2011
, “
Biomechanical Failure Properties and Microstructural Content of Ruptured and Unruptured Abdominal Aortic Aneurysms
,”
J. Biomech.
,
44
(
13
), pp.
2501
2507
.10.1016/j.jbiomech.2011.06.004
8.
Vande Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
The Effects of Aneurysm on the Biaxial Mechanical Behavior of Human Abdominal Aorta
,”
J. Biomech.
,
39
(
7
), pp.
1324
1334
.10.1016/j.jbiomech.2005.03.003
9.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
1996
, “
Ex Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
,
24
(
5
), pp.
573
582
.10.1007/BF02684226
10.
Balzani
,
D.
,
Brinkhues
,
S.
, and
Holzapfel
,
G. A.
,
2012
, “
Constitutive Framework for the Modeling of Damage in Collagenous Soft Tissues With Application to Arterial Walls
,”
Comput. Methods Appl. Mech. Eng.
,
213–216
, pp.
139
151
.10.1016/j.cma.2011.11.015
11.
Kratzberg
,
J. A.
,
Walker
,
P. J.
,
Rikkers
,
E.
, and
Raghavan
,
M. L.
,
2009
, “
The Effect of Proteolytic Treatment on Plastic Deformation of Porcine Aortic Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
65
72
.10.1016/j.jmbbm.2008.04.001
12.
Christensen
,
R. M.
,
2008
, “
Observations on the Definition of Yield Stress
,”
Acta Mech.
,
196
(
3–4
), pp.
239
244
.10.1007/s00707-007-0478-0
13.
Hull
,
D.
, and
Bacon
,
D. J.
,
2011
,
Introduction to Dislocations
,
Elsevier Science & Technology
,
Oxford, UK
.
14.
Lipovetsky
,
S.
,
2019
, “
Machine Learning in Medicine—A Complete Overview
,”
Technometrics
,
61
(
3
), pp.
425
426
.10.1080/00401706.2019.1629744
15.
Olson
,
R. S.
,
Urbanowicz
,
R. J.
,
Andrews
,
P. C.
,
Lavender
,
N. A.
,
Kidd
,
L. C.
, and
Moore
,
J. H.
,
2016
, “
Automating Biomedical Data Science Through Tree-Based Pipeline Optimization
,”
Applications of Evolutionary Computation
, 9597, pp. 123–137.10.1007/978-3-319-31204-0_9
16.
B
,
A.
,
Rao
,
S.
, and
Pandya
,
H. J.
,
2019
, “
Engineering Approaches for Characterizing Soft Tissue Mechanical Properties: A Review
,”
Clin. Biomech.
,
69
, pp.
127
140
.10.1016/j.clinbiomech.2019.07.016
17.
Wang
,
W.
,
Wang
,
H.
,
Zhou
,
J.
,
Fan
,
H.
, and
Liu
,
X.
,
2021
, “
Machine Learning Prediction of Mechanical Properties of Braided-Textile Reinforced Tubular Structures
,”
Mater. Des.
,
212
, p.
110181
.10.1016/j.matdes.2021.110181
18.
Kim
,
J.
,
2021
, “
Development of an Automated, Machine Learning-Based Methodology for Yield Point Identification From Tensile Testing Data of Soft Tissues
,”
Ph.D. dissertation
,
ProQuest Dissertations Publishing
.https://www.proquest.com/openview/4428040c84e0e2b6980cd17c95510d9d/1?pqorigsite=gscholar&cbl=18750&diss=y
19.
Minorsky
,
N.
,
1922
,
Directional Stability of Automatically Steered Bodies
,
American Society for Naval Engineers
, Alexandria, VA,
34
(
2
), pp.
280
309
.
20.
Ninomiya
,
O. H.
,
Tavares Monteiro
,
J. A.
,
Higuchi
,
M. D. L.
,
Puech-Leão
,
P.
,
de Luccia
,
N.
,
Raghavan
,
M. L.
, and
da Silva
,
E. S.
,
2015
, “
Biomechanical Properties and Microstructural Analysis of the Human Nonaneurysmal Aorta as a Function of Age, Gender and Location: An Autopsy Study
,”
J. Vasc. Res.
,
52
(
4
), pp.
257
264
.10.1159/000442979
21.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
Castro de Tolosa
,
E. M.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
da Silva
,
E. S.
,
2006
, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
,
39
(
16
), pp.
3010
3016
.10.1016/j.jbiomech.2005.10.021
22.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
, et al.,
2011
, “
Scikit-Learn: Machine Learning in Python
,” J. Machine Learn. Res., 12, pp. 2825–2830.
23.
Chen
,
T.
,
2016
, “
XGBoost: A Scalable Tree Boosting System
,”.https://www.kdd.org/kdd2016/papers/files/rfp0697-chenAemb.pdf
24.
Luo
,
Y.
,
Fan
,
Z.
,
Baek
,
S.
, and
Lu
,
J.
,
2018
, “
Machine Learning–Aided Exploration of Relationship Between Strength and Elastic Properties in Ascending Thoracic Aneurysm
,”
Int. J. Numer. Methods Biomed. Eng.
,
34
(
6
), p.
e2977
.10.1002/cnm.2977
25.
Sugita
,
S.
, and
Matsumoto
,
T.
,
2013
, “
Yielding Phenomena of Aortic Wall and Intramural Collagen Fiber Alignment: Possible Link to Rupture Mechanism of Aortic Aneurysms
,”
J. Biomech. Sci. Eng.
,
8
(
2
), pp.
104
113
.10.1299/jbse.8.104
26.
Chung
,
T. K.
,
Gueldner
,
P. H.
,
Aloziem
,
O. U.
,
Liang
,
N. L.
, and
Vorp
,
D. A.
,
2024
, “
Artificial Intelligence Tool to Predict Abdominal Aortic Aneurysm Patient Outcomes
,”
Scientific Reports
, epub.
You do not currently have access to this content.