Abstract

Short dental implants with platform matching connection have been used for the rehabilitation of atrophic jaws whenever standard-length dental implants cannot be placed without prior bone augmentation. Yet, there remains a lack of data regarding the risk of technical failures when the all-on-4 configuration is performed in atrophic jaws with platform-switching distal short dental implants. Thus, the current study used the finite element method to evaluate the mechanical behavior at the level of the prosthetic components of the all-on-4 concept performed in atrophic mandible using short-length distal implants with platform switching (PSW) connection. Three models of the all-on-4 configuration were generated in human atrophic mandibles. The geometric models consisted of PSW connection tilted standard (AO4T; θ = 30 deg; 11 mm-length), straight standard (AO4S; θ = 0 deg; 11 mm-length) and straight short (AO4Sh; θ = 0 deg; 8 mm-length) distal implants. A resultant force of 300 N was performed obliquely in the left side and posterior region of the prosthetic bar. The von Mises equivalent stress (σvm) and maximum and minimum principal stresses (σmax and σmin) were performed at level of the prosthetic components/implants and peri-implant bone crest, respectively. The general displacement of the models was also evaluated. The stress analysis was performed on the side of load application. The AO4S configuration showed the lowest values of σvm in the mesial left (ML) and distal left (DL) abutments (37.53 MPa and 232.77 MPa, respectively) and dental implants (91.53 MPa and 231.21 MPa, respectively). The AO4Sh configuration showed the highest values of σvm in the bar screw (102.36 MPa), abutment (117.56 MPa), and dental implant (293.73 MPa) of the ML area. Among the models, the highest values of σmax and σmin were noticed in the peri-implant bone crest of the AO4T design (131.48 MPa and 195.31 MPa, respectively). All models showed similar values of general displacements, which were concentrated in the mandible symphysis. The all-on-4 configurations designed with PSW connection and tilted standard (AO4T; θ = 30 deg; 11 mm-length), straight standard (AO4S; θ = 0 deg; 11 mm-length) or straight short (AO4Sh; θ = 0 deg; 8 mm-length) distal implants were not associated with higher odds of technical failures. The AO4Sh design may be a promising option for the prosthetic rehabilitation of atrophic jaws.

References

1.
Maló
,
P.
,
Rangert
,
B.
, and
Nobre
,
M.
,
2003
, “
All-On-Four” Immediate-Function Concept With Brånemark System Implants for Completely Edentulous Mandibles: A Retrospective Clinical Study
,”
Clin. Implant. Dent. Relat. Res.
,
5
(
1
), pp.
2
9
.10.1111/j.1708-8208.2003.tb00010.x
2.
Babbush
,
C. A.
,
Kutsko
,
G. T.
, and
Brokloff
,
J.
,
2011
, “
The All-On-Four Immediate Function Treatment Concept With NobelActive Implants: A Retrospective Study
,”
J. Oral Implantol.
,
37
(
4
), pp.
431
445
.10.1563/AAID-JOI-D-10-00133
3.
Malo
,
P.
,
de Araujo Nobre
,
M.
,
Lopes
,
A.
,
Ferro
,
A.
, and
Gravito
,
I.
,
2015
, “
All-On-4(R) Treatment Concept for the Rehabilitation of the Completely Edentulous Mandible: A 7-Year Clinical and 5-Year Radiographic Retrospective Case Series With Risk Assessment for Implant Failure and Marginal Bone Level
,”
Clin. Implant. Dent. Relat. Res.
,
17
(
2
), pp.
531
541
.10.1111/cid.12282
4.
Patzelt
,
S. B.
,
Bahat
,
O.
,
Reynolds
,
M. A.
, and
Strub
,
J. R.
,
2014
, “
The All-on-Four Treatment Concept: A Systematic Review
,”
Clin. Implant. Dent. Relat. Res.
,
16
(
6
), pp.
836
855
.10.1111/cid.12068
5.
Bevilacqua
,
M.
,
Tealdo
,
T.
,
Menini
,
M.
,
Pera
,
F.
,
Mossolov
,
A.
,
Drago
,
C.
, and
Pera
,
P.
,
2011
, “
The Influence of Cantilever Length and Implant Inclination on Stress Distribution in Maxillary Implant-Supported Fixed Dentures
,”
J. Prosthet. Dent.
,
105
(
1
), pp.
5
13
.10.1016/S0022-3913(10)60182-5
6.
Ozan
,
O.
, and
Kurtulmus-Yilmaz
,
S.
,
2018
, “
Biomechanical Comparison of Different Implant Inclinations and Cantilever Lengths in All-On-4 Treatment Concept by Three-Dimensional Finite Element Analysis
,”
Int. J. Oral Maxillofac. Implants
,
33
(
1
), pp.
64
71
.10.11607/jomi.6201
7.
Brunski
,
J. B.
,
2014
, “
Biomechanical Aspects of the Optimal Number of Implants to Carry a Cross-Arch Full Restoration
,”
Eur. J. Oral Implantol.
,
7
(
2
), pp.
111
131
.https://www.quintessencepublishing.com/deu/en/article/855807/international-journal-of-oralimplantology/2014/supplement-2/biomechanical-aspects-of-the-optimal-number-of-implants-tocarry-a-cross-arch-full-restoration
8.
Ausiello
,
P.
,
Tribst
,
J. P. M.
,
Ventre
,
M.
,
Salvati
,
E.
,
di Lauro
,
A. E.
,
Martorelli
,
M.
,
Lanzotti
,
A.
, and
Watts
,
D. C.
,
2021
, “
The Role of Cortical Zone Level and Prosthetic Platform Angle in Dental Implant Mechanical Response: A 3D Finite Element Analysis
,”
Dent. Mater.
,
37
(
11
), pp.
1688
1697
.10.1016/j.dental.2021.08.022
9.
Pellizzer
,
E. P.
,
Lemos
,
C. A.
,
Almeida
,
D. A.
,
de Souza Batista
,
V. E.
,
Santiago Júnior
,
J. F.
, and
Verri
,
F. R.
,
2018
, “
Biomechanical Analysis of Different Implant-Abutments Interfaces in Different Bone Types: An in Silico Analysis
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
90
, pp.
645
650
.10.1016/j.msec.2018.05.012
10.
O'Sullivan
,
D.
,
Sennerby
,
L.
, and
Meredith
,
N.
,
2004
, “
Influence of Implant Taper on the Primary and Secondary Stability of Osseointegrated Titanium Implants
,”
Clin. Oral Implants. Res.
,
15
(
4
), pp.
474
480
.10.1111/j.1600-0501.2004.01041.x
11.
Al-Nawas
,
B.
,
Wagner
,
W.
, and
Grötz
,
K. A.
,
2006
, “
Insertion Torque and Resonance Frequency Analysis of Dental Implant Systems in an Animal Model With Loaded Implants
,”
Int. J. Oral Maxillofac. Implants
,
21
(
5
), pp.
726
732
.http://www.quintpub.com/journals/omi/abstract.php?article_id=2446
12.
de Faria Almeida
,
D. A.
,
Pellizzer
,
E. P.
,
Verri
,
F. R.
,
Santiago
,
J. F.
, Jr.
, and
de Carvalho
,
P. S.
,
2014
, “
Influence of Tapered and External Hexagon Connections on Bone Stresses Around Tilted Dental Implants: Three-Dimensional Finite Element Method With Statistical Analysis
,”
J. Periodontol.
,
85
(
2
), pp.
261
269
.10.1902/jop.2013.120713
13.
Chrcanovic
,
B. R.
,
Albrektsson
,
T.
, and
Wennerberg
,
A.
,
2015
, “
Platform Switch and Dental Implants: A Meta-Analysis
,”
J. Dent.
,
43
(
6
), pp.
629
646
.10.1016/j.jdent.2014.12.013
14.
Almeida
,
E. O.
,
Rocha
,
E. P.
,
Freitas Junior
,
A. C.
,
Anchieta
,
R. B.
,
Poveda
,
R.
,
Gupta
,
N.
, and
Coelho
,
P. G.
,
2015
, “
Tilted and Short Implants Supporting Fixed Prosthesis in an Atrophic Maxilla: A 3D-FEA Biomechanical Evaluation
,”
Clin. Implant. Dent. Relat. Res.
,
17
(
1
), pp.
332
342
.10.1111/cid.12129
15.
Özdemir Doğan
,
D.
,
Polat
,
N. T.
,
Polat
,
S.
,
Şeker
,
E.
, and
Gül
,
E. B.
,
2014
, “
Evaluation of “All-On-Four” Concept and Alternative Designs With 3D Finite Element Analysis Method
,”
Clin. Implant. Dent. Relat. Res.
,
16
(
4
), pp.
501
510
.10.1111/cid.12024
16.
Nisand
,
D.
, and
Renouard
,
F.
,
2014
, “
Short Implant in Limited Bone Volume
,”
Periodontology 2000
,
66
(
1
), pp.
72
96
.10.1111/prd.12053
17.
Nielsen
,
H. B.
,
Schou
,
S.
,
Isidor
,
F.
,
Christensen
,
A. E.
, and
Starch-Jensen
,
T.
,
2019
, “
Short Implants (</=8mm) Compared to Standard Length Implants (>8mm) in Conjunction With Maxillary Sinus Floor Augmentation: A Systematic Review and Meta-Analysis
,”
Int. J. Oral Maxillofac. Surg.
,
48
(
2
), pp.
239
249
.10.1016/j.ijom.2018.05.010
18.
Nisand
,
D.
,
Picard
,
N.
, and
Rocchietta
,
I.
,
2015
, “
Short Implants Compared to Implants in Vertically Augmented Bone: A Systematic Review
,”
Clin. Oral Implants Res.
,
26
(
11
), pp.
170
179
.10.1111/clr.12632
19.
Al-Johany
,
S.
,
S.
,
2019
, “
Survival Rates of Short Dental Implants (</= 6.5 Mm) Placed in Posterior Edentulous Ridges and Factors Affecting Their Survival After a 12-Month Follow-Up Period: A Systematic Review
,”
Int. J. Oral Maxillofac. Implants
,
34
(
3
), pp.
605
621
.10.11607/jomi.7187
20.
Tribst
,
J. P. M.
,
Campanelli de Morais
,
D.
,
Melo de Matos
,
J. D.
,
Lopes
,
G. D R. S.
,
Dal Piva
,
A. M. D O.
,
Souto Borges
,
A. L.
,
Bottino
,
M. A.
,
Lanzotti
,
A.
,
Martorelli
,
M.
, and
Ausiello
,
P.
,
2022
, “
Influence of Framework Material and Posterior Implant Angulation in Full-Arch All-On-4 Implant-Supported Prosthesis Stress Concentration
,”
Dent. J.
,
10
(
1
), p.
12
.10.3390/dj10010012
21.
Gómez-Vallejo
,
J.
,
Roces-García
,
J.
,
Moreta
,
J.
,
Donaire-Hoyas
,
D.
,
Gayoso
,
Ó.
,
Marqués-López
,
F.
, and
Albareda
,
J.
,
2021
, “
Biomechanical Behavior of an Hydroxyapatite-Coated Traditional Hip Stem and a Short One of Similar Design: Comparative Study Using Finite Element Analysis
,”
Arthroplast. Today
,
7
, pp.
167
176
.10.1016/j.artd.2020.11.022
22.
Lerch
,
M.
,
Windhagen
,
H.
,
Kurtz
,
A. E.
,
Budde
,
S.
,
Behrens
,
B. A.
,
Bouguecha
,
A.
, and
Almohallami
,
A.
,
2019
, “
Pre-Launch' Finite Element Analysis of a Short-Stem Total Hip Arthroplasty System Consisting of Two Implant Types
,”
Clin. Biomech.
,
61
, pp.
31
37
.10.1016/j.clinbiomech.2018.11.002
23.
Toia
,
M.
,
Stocchero
,
M.
,
Jinno
,
Y.
,
Wennerberg
,
A.
,
Becktor
,
J. P.
,
Jimbo
,
R.
, and
Halldin
,
A.
,
2019
, “
Effect of Misfit at Implant-Level Framework and Supporting Bone on Internal Connection Implants: Mechanical and Finite Element Analysis
,”
Int. J. Oral Maxillofac. Implants
,
34
(
2
), pp.
320
328
.10.11607/jomi.6965
24.
Elleuch
,
S.
,
Jrad
,
H.
,
Kessentini
,
A.
,
Wali
,
M.
, and
Dammak
,
F.
,
2021
, “
Design Optimization of Implant Geometrical Characteristics Enhancing Primary Stability Using FEA of Stress Distribution Around Dental Prosthesis
,”
Comput. Methods Biomech. Biomed. Eng.
,
24
(
9
), pp.
1035
1051
.10.1080/10255842.2020.1867112
25.
Revilla-Leon
,
M.
,
Gomez-Polo
,
M.
,
Vyas
,
S.
,
Barmak
,
B. A.
,
Galluci
,
G. O.
,
Att
,
W.
, and
Krishnamurthy
,
V. R.
,
2023
, “
Artificial Intelligence Applications in Implant Dentistry: A Systematic Review
,”
J. Prosthet. Dent.
,
129
(
2
), pp.
293
300
.10.1016/j.prosdent.2021.05.008
26.
Santana
,
L. C. L.
,
Guastaldi
,
F. P. S.
,
Idogava
,
H. T.
,
Noritomi
,
P. Y.
,
De Foggi
,
C. C.
, and
Vaz
,
L. G.
,
2021
, “
Mechanical Stress Analysis of Different Configurations of the All-on-4 Concept in Atrophic Mandible: A 3D Finite Element Study
,”
Int. J. Oral Maxillofac. Implants
,
36
(
1
), pp.
75
85
.10.11607/jomi.8150
27.
Fazi
,
G.
,
Tellini
,
S.
,
Vangi
,
D.
, and
Branchi
,
R.
,
2011
, “
Three-Dimensional Finite Element Analysis of Different Implant Configurations for a Mandibular Fixed Prosthesis
,”
Int. J. Oral Maxillofac. Implants
,
26
(
4
), pp.
752
759
.http://www.quintpub.com/journals/omi/abstract.php?article_id=11236
28.
Horita
,
S.
,
Sugiura
,
T.
,
Yamamoto
,
K.
,
Murakami
,
K.
,
Imai
,
Y.
, and
Kirita
,
T.
,
2017
, “
Biomechanical Analysis of Immediately Loaded Implants According to the “All-On-Four” Concept
,”
J. Prosthodont. Res.
,
61
(
2
), pp.
123
132
.10.1016/j.jpor.2016.08.002
29.
Bhering
,
C. L.
,
Mesquita
,
M. F.
,
Kemmoku
,
D. T.
,
Noritomi
,
P. Y.
,
Consani
,
R. L.
, and
Barao
,
V. A.
,
2016
, “
Comparison Between All-on-Four and All-on-Six Treatment Concepts and Framework Material on Stress Distribution in Atrophic Maxilla: A Prototyping Guided 3D-FEA Study
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
69
, pp.
715
725
.10.1016/j.msec.2016.07.059
30.
Hussein
,
M. O.
, and
Rabie
,
M. E.
,
2015
, “
Three-Dimensional Nonlinear Contact Finite Element Analysis of Mandibular All-on-4 Design
,”
J. Oral Implantol.
,
41
(
2
), pp.
12
18
.10.1563/AAID-JOI-D-13-00121
31.
Luhr
,
H.-G.
,
Reidick
,
T.
, and
Merten
,
H.-A.
,
1996
, “
Results of Treatment of Fractures of the Atrophic Edentulous Mandible by Compression Plating: A Retrospective Evaluation of 84 Consecutive Cases
,”
J. Oral Maxillofac. Surg.
,
54
(
3
), pp.
250
254
.10.1016/S0278-2391(96)90733-8
32.
Corrêa
,
C.
,
Margonar
,
R.
,
Noritomi
,
P.
, and
Vaz
,
L.
,
2014
, “
Mechanical Behavior of Dental Implants in Different Positions in the Rehabilitation of the Anterior Maxilla
,”
J. Prosthet. Dent.
,
111
(
4
), pp.
301
309
.10.1016/j.prosdent.2013.06.019
33.
Bertl
,
K.
,
Subotic
,
M.
,
Heimel
,
P.
,
Schwarze
,
U. Y.
,
Tangl
,
S.
, and
Ulm
,
C.
,
2015
, “
Morphometric Characteristics of Cortical and Trabecular Bone in Atrophic Edentulous Mandibles
,”
Clin. Oral Implants Res.
,
26
(
7
), pp.
780
787
.10.1111/clr.12340
34.
Pessoa
,
R. S.
,
Sousa
,
R. M.
,
Pereira
,
L. M.
,
Neves
,
F. D.
,
Bezerra
,
F. J.
,
Jaecques
,
S. V.
,
Sloten
,
J. V.
,
Quirynen
,
M.
,
Teughels
,
W.
, and
Spin-Neto
,
R.
,
2017
, “
Bone Remodeling Around Implants With External Hexagon and Morse-Taper Connections: A Randomized, Controlled, Split-Mouth, Clinical Trial
,”
Clin. Implants Dent. Relat. Res.
,
19
(
1
), pp.
97
110
.10.1111/cid.12437
35.
Peixoto
,
H. E.
,
Bordin
,
D.
,
Del Bel Cury
,
A. A.
,
da Silva
,
W. J.
, and
Faot
,
F.
,
2016
, “
The Role of Prosthetic Abutment Material on the Stress Distribution in a Maxillary Single Implant-Supported Fixed Prosthesis
,”
Mat. Sci. Eng. C Mater. Biol. Appl.
,
65
, pp.
90
96
.10.1016/j.msec.2016.04.004
36.
Monje
,
A.
,
Suarez
,
F.
,
Galindo-Moreno
,
P.
,
Garcia-Nogales
,
A.
,
Fu
,
J. H.
, and
Wang
,
H. L.
,
2014
, “
A Systematic Review on Marginal Bone Loss Around Short Dental Implants (<10 Mm) for Implant-Supported Fixed Prostheses
,”
Clin. Oral Implants Res.
,
25
(
10
), pp.
1119
1124
.10.1111/clr.12236
37.
Jensen
,
O. T.
,
2014
, “
Complete Arch Site Classification for All-on-4 Immediate Function
,”
J. Prosthet. Dent.
,
112
(
4
), pp.
741
751.e2
.10.1016/j.prosdent.2013.12.023
38.
de Almeida
,
E. O.
,
Rocha
,
E. P.
,
Freitas
,
A. C.
, and
Freitas
,
M. M.
,
2010
, “
Finite Element Stress Analysis of Edentulous Mandibles With Different Bone Types Supporting Multiple-Implant Superstructures
,”
Int. J. Oral Maxillofac. Implants
,
25
(
6
), pp.
1108
–11
14
.http://www.quintpub.com/journals/omi/abstract.php?article_id=10320#.ZGtBu3ZByUk
39.
Pessoa
,
R. S.
,
Muraru
,
L.
,
Junior
,
E. M.
,
Vaz
,
L. G.
,
Sloten
,
J. V.
,
Duyck
,
J.
, and
Jaecques
,
S. V.
,
2010
, “
Influence of Implant Connection Type on the Biomechanical Environment of Immediately Placed Implants—CT-Based Nonlinear, Three-Dimensional Finite Element Analysis
,”
Clin. Implant Dent. Relat. Res.
,
12
(
3
), pp.
219
234
.10.1111/j.1708-8208.2009.00155.x
40.
Otsuka
,
Y.
,
Kawaguchi
,
H.
, and
Mutoh
,
Y.
,
2016
, “
Cyclic Delamination Behavior of Plasma-Sprayed Hydroxyapatite Coating on Ti-6Al-4V Substrates in Simulated Body Fluid
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
67
, pp.
533
541
.10.1016/j.msec.2016.05.058
41.
Marcian
,
P.
,
Borak
,
L.
,
Zikmund
,
T.
,
Horackova
,
L.
,
Kaiser
,
J.
,
Joukal
,
M.
, and
Wolff
,
J.
,
2021
, “
On the Limits of Finite Element Models Created From (Micro)CT Datasets and Used in Studies of Bone-Implant-Related Biomechanical Problems
,”
J. Mech. Behav. Biomed. Mater.
,
117
, p.
104393
.10.1016/j.jmbbm.2021.104393
42.
Peixoto
,
H. E.
,
Camati
,
P. R.
,
Faot
,
F.
,
Sotto-Maior
,
B. S.
,
Martinez
,
E. F.
, and
Peruzzo
,
D. C.
,
2017
, “
Rehabilitation of the Atrophic Mandible With Short Implants in Different Positions: A Finite Elements Study
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
80
, pp.
122
128
.10.1016/j.msec.2017.03.310
43.
Ferreira
,
M. B.
,
Barao
,
V. A.
,
Faverani
,
L. P.
,
Hipolito
,
A.
,
C.
, and
Assuncao
,
W. G.
,
2014
, “
The Role of Superstructure Material on the Stress Distribution in Mandibular Full-Arch Implant-Supported Fixed Dentures. A CT-Based 3D-FEA
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
35
, pp.
92
99
.10.1016/j.msec.2013.10.022
44.
Barao
,
V. A.
,
Delben
,
J. A.
,
Lima
,
J.
,
Cabral
,
T.
, and
Assuncao
,
W. G.
,
2013
, “
Comparison of Different Designs of Implant-Retained Overdentures and Fixed Full-Arch Implant-Supported Prosthesis on Stress Distribution in Edentulous Mandible–a Computed Tomography-Based Three-Dimensional Finite Element Analysis
,”
J. Biomech.
,
46
(
7
), pp.
1312
1320
.10.1016/j.jbiomech.2013.02.008
45.
Dayrell
,
A. C.
,
Noritomi
,
P. Y.
,
Takahashi
,
J. M.
,
Consani
,
R. L.
,
Mesquita
,
M. F.
, and
dos Santos
,
M. B.
,
2015
, “
Biomechanical Analysis of Implant-Supported Prostheses With Different Implant-Abutment Connections
,”
Int. J. Prosthodont.
,
28
(
6
), pp.
621
623
.10.11607/ijp.4258
46.
Adler
,
L.
,
Buhlin
,
K.
, and
Jansson
,
L.
,
2020
, “
Survival and Complications: A 9- to 15-Year Retrospective Follow-Up of Dental Implant Therapy
,”
J. Oral Rehab.
,
47
(
1
), pp.
67
77
.10.1111/joor.12866
47.
Wittneben
,
J. G.
,
Buser
,
D.
,
Salvi
,
G. E.
,
Burgin
,
W.
,
Hicklin
,
S.
, and
Bragger
,
U.
,
2014
, “
Complication and Failure Rates With Implant-Supported Fixed Dental Prostheses and Single Crowns: A 10-Year Retrospective Study
,”
Clin. Implant Dent. Relat. Res.
,
16
(
3
), pp.
356
364
.10.1111/cid.12066
48.
Nergiz
,
I.
,
Schmage
,
P.
, and
Shahin
,
R.
,
2004
, “
Removal of a Fractured Implant Abutment Screw: A Clinical Report
,”
J. Prosthet. Dent.
,
91
(
6
), pp.
513
517
.10.1016/j.prosdent.2004.03.010
49.
Romanos
,
G.
,
Froum
,
S.
,
Hery
,
C.
,
Cho
,
S. C.
, and
Tarnow
,
D.
,
2010
, “
Survival Rate of Immediately Vs Delayed Loaded Implants: Analysis of the Current Literature
,”
J. Oral Implantol.
,
36
(
4
), pp.
315
324
.10.1563/AAID-JOI-D-09-00060
50.
Abreu
,
R. T.
,
Spazzin
,
A. O.
,
Noritomi
,
P. Y.
,
Consani
,
R. L.
, and
Mesquita
,
M. F.
,
2010
, “
Influence of Material of Overdenture-Retaining Bar With Vertical Misfit on Three-Dimensional Stress Distribution
,”
J. Prosthodont.
,
19
(
6
), pp.
425
431
.10.1111/j.1532-849X.2010.00612.x
51.
Tepper
,
G.
,
Haas
,
R.
,
Zechner
,
W.
,
Krach
,
W.
, and
Watzek
,
G.
,
2002
, “
Three‐Dimensional Finite Element Analysis of Implant Stability in the Atrophic Posterior Maxilla
,”
Clin. Oral Implants Res.
,
13
(
6
), pp.
657
665
.10.1034/j.1600-0501.2002.130613.x
52.
Holmgren
,
E. P.
,
Seckinger
,
R. J.
,
Kilgren
,
L. M.
, and
Mante
,
F.
,
1998
, “
Evaluating Parameters of Osseointegrated Dental Implants Using Finite Element Analysis–A Two-Dimensional Comparative Study Examining the Effects of Implant Diameter, Implant Shape, and Load Direction
,”
J. Oral Implantol.
,
24
(
2
), pp.
80
88
.10.1563/1548-1336(1998)024<0080:EPOODI>2.3.CO;2
53.
Sertgöz
,
A.
, and
Güvener
,
S.
,
1996
, “
Finite Element Analysis of the Effect of Cantilever and Implant Length on Stress Distribution in an Implant-Supported Fixed Prosthesis
,”
J. Prosthet. Dent.
,
76
(
2
), pp.
165
169
.10.1016/S0022-3913(96)90301-7
54.
McAlarney
,
M. E.
, and
Stavropoulos
,
D. N.
,
2000
, “
Theoretical Cantilever Lengths Versus Clinical Variables in Fifty-Five Clinical Cases
,”
J. Prosthet. Dent.
,
83
(
3
), pp.
332
343
.10.1016/S0022-3913(00)70137-5
55.
Maló
,
P.
,
de Araújo Nobre
,
M.
,
Petersson
,
U.
, and
Wigren
,
S.
,
2006
, “
A Pilot Study of Complete Edentulous Rehabilitation With Immediate Function Using a New Implant Design: Case Series
,”
Clin. Implant Dent. Relat. Res.
,
8
(
4
), pp.
223
232
.10.1111/j.1708-8208.2006.00024.x
56.
Takahashi
,
T.
,
Shimamura
,
I.
, and
Sakurai
,
K.
,
2010
, “
Influence of Number and Inclination Angle of Implants on Stress Distribution in Mandibular Cortical Bone With All-on-4 Concept
,”
J. Prosthodont. Res.
,
54
(
4
), pp.
179
184
.10.1016/j.jpor.2010.04.004
57.
Hansson
,
S.
, and
Norton
,
M.
,
1999
, “
The Relation Between Surface Roughness and Interfacial Shear Strength for Bone-Anchored Implants. A Mathematical Model
,”
J. Biomech.
,
32
(
8
), pp.
829
836
.10.1016/S0021-9290(99)00058-5
58.
Borges Radaelli
,
M. T.
,
Idogava
,
H. T.
,
Spazzin
,
A. O.
,
Noritomi
,
P. Y.
, and
Boscato
,
N.
,
2018
, “
Parafunctional Loading and Occlusal Device on Stress Distribution Around Implants: A 3D Finite Element Analysis
,”
J. Prosthet. Dent.
,
120
(
4
), pp.
565
572
.10.1016/j.prosdent.2017.12.023
59.
Sotto-Maior
,
B. S.
,
Lima
,
C.
,
Senna
,
P. M.
,
Camargos
,
G.
, and
Del Bel Cury
,
A. A.
,
2014
, “
Biomechanical Evaluation of Subcrestal Dental Implants With Different Bone Anchorages
,”
Braz. Oral Res.
,
28
(
1
), pp.
1
7
.10.1590/1807-3107BOR-2014.vol28.0023
60.
Macedo
,
J. P.
,
Pereira
,
J.
,
Faria
,
J.
,
Souza
,
J. C. M.
,
Alves
,
J. L.
,
López-López
,
J.
, and
Henriques
,
B.
,
2018
, “
Finite Element Analysis of Peri-Implant Bone Volume Affected by Stresses Around Morse Taper Implants: Effects of Implant Positioning to the Bone Crest
,”
Comput. Methods Biomech. Biomed. Eng.
,
21
(
12
), pp.
655
662
.10.1080/10255842.2018.1507025
61.
Ketabchi
,
A.
,
Weck
,
A.
, and
Variola
,
F.
,
2015
, “
Influence of Oxidative Nanopatterning and Anodization on the Fatigue Resistance of Commercially Pure Titanium and Ti-6Al-4V
,”
J. Biomed. Mater. Res. B Appl. Biomater.
,
103
(
3
), pp.
563
571
.10.1002/jbm.b.33227
62.
Sinha
,
S.
, and
Gurao
,
N. P.
,
2017
, “
The Role of Crystallographic Texture on Load Reversal and Low Cycle Fatigue Performance of Commercially Pure Titanium
,”
Mater. Sci. Eng. A
,
691
, pp.
100
109
.10.1016/j.msea.2017.03.043
63.
Niinomi
,
M.
,
Nakai
,
M.
, and
Hieda
,
J.
,
2012
, “
Development of New Metallic Alloys for Biomedical Applications
,”
Acta Biomater.
,
8
(
11
), pp.
3888
3903
.10.1016/j.actbio.2012.06.037
64.
Chen
,
W. C.
,
Teng
,
F. Y.
, and
Hung
,
C. C.
,
2014
, “
Characterization of Ni-Cr Alloys Using Different Casting Techniques and Molds
,”
Mater. Sci. Eng. C Mater. Biol. Appl.
,
35
, pp.
231
238
.10.1016/j.msec.2013.11.014
You do not currently have access to this content.