Abstract

Porous cages with lower global stiffness induce more bone ingrowth and enhance bone-implant anchorage. However, it's dangerous for spinal fusion cages, which usually act as stabilizers, to sacrifice global stiffness for bone ingrowth. Intentional design on internal mechanical environment might be a promising approach to promote osseointegration without undermining global stiffness excessively. In this study, three porous cages with different architectures were designed to provide distinct internal mechanical environments for bone remodeling during spinal fusion process. A design space optimization-topology optimization based algorithm was utilized to numerically reproduce the mechano-driven bone ingrowth process under three daily load cases, and the fusion outcomes were analyzed in terms of bone morphological parameters and bone-cage stability. Simulation results show that the uniform cage with higher compliance induces deeper bone ingrowth than the optimized graded cage. Whereas, the optimized graded cage with the lowest compliance exhibits the lowest stress at the bone-cage interface and better mechanical stability. Combining the advantages of both, the strain-enhanced cage with locally weakened struts offers extra mechanical stimulus while keeping relatively low compliance, leading to more bone formation and the best mechanical stability. Thus, the internal mechanical environment can be well-designed via tailoring architectures to promote bone ingrowth and achieve a long-term bone-scaffold stability.

References

1.
Regis
,
M.
,
Marin
,
E.
,
Fedrizzi
,
L.
, and
Pressacco
,
M.
,
2015
, “
Additive Manufacturing of Trabecular Titanium Orthopedic Implants
,”
MRS Bull.
,
40
(
2
), pp.
137
144
.10.1557/mrs.2015.1
2.
Wang
,
X.
,
Xu
,
S.
,
Zhou
,
S.
,
Xu
,
W.
,
Leary
,
M.
,
Choong
,
P.
,
Qian
,
M.
,
Brandt
,
M.
, and
Xie
,
Y. M.
,
2016
, “
Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants: A Review
,”
Biomaterials
,
83
, pp.
127
141
.10.1016/j.biomaterials.2016.01.012
3.
Li
,
Z.
,
Müller
,
R.
, and
Ruffoni
,
D.
,
2017
, “
Bone Remodeling and Mechanobiology Around Implants: Insights From Small Animal Imaging
,”
J. Orthop. Res.
,
36
(
2
), pp.
584
593
.10.1002/jor.23758
4.
Schulte
,
F. A.
,
Ruffoni
,
D.
,
Lambers
,
F. M.
,
Christen
,
D.
,
Webster
,
D. J.
,
Kuhn
,
G.
, and
Müller
,
R.
,
2013
, “
Local Mechanical Stimuli Regulate Bone Formation and Resorption in Mice at the Tissue Level
,”
PLoS One
,
8
(
4
), p.
e62172
.10.1371/journal.pone.0062172
5.
Wang
,
Y.
,
Arabnejad
,
S.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2018
, “
Hip Implant Design With Three-Dimensional Porous Architecture of Optimized Graded Density
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111406
.10.1115/1.4041208
6.
Arabnejad
,
S.
,
Johnston
,
B.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2017
, “
Fully Porous 3D Printed Titanium Femoral Stem to Reduce Stress-Shielding Following Total Hip Arthroplasty
,”
J. Orthop. Res.
,
35
(
8
), pp.
1774
1783
.10.1002/jor.23445
7.
Boccaccio
,
A.
,
Uva
,
A. E.
,
Fiorentino
,
M.
,
Mori
,
G.
, and
Monno
,
G.
,
2016
, “
Geometry Design Optimization of Functionally Graded Scaffolds for Bone Tissue Engineering: A Mechanobiological Approach
,”
PLoS One
,
11
(
1
), p.
e0146935
.10.1371/journal.pone.0146935
8.
Ahmadi
,
S. M.
,
Campoli
,
G.
,
Amin Yavari
,
S.
,
Sajadi
,
B.
,
Wauthle
,
R.
,
Schrooten
,
J.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2014
, “
Mechanical Behavior of Regular Open-Cell Porous Biomaterials Made of Diamond Lattice Unit Cells
,”
J. Mech. Behav. Biomed. Mater.
,
34
, pp.
106
115
.10.1016/j.jmbbm.2014.02.003
9.
Onal
,
E.
,
Frith
,
J. E.
,
Jurg
,
M.
,
Wu
,
X.
, and
Molotnikov
,
A.
,
2018
, “
Mechanical Properties and In Vitro Behavior of Additively Manufactured and Functionally Graded Ti6Al4V Porous Scaffolds
,”
Metals (Basel
),
8
(
4
), p.
200
.10.3390/met8040200
10.
Afshar
,
M.
,
Anaraki
,
A. P.
,
Montazerian
,
H.
, and
Kadkhodapour
,
J.
,
2016
, “
Additive Manufacturing and Mechanical Characterization of Graded Porosity Scaffolds Designed Based on Triply Periodic Minimal Surface Architectures
,”
J. Mech. Behav. Biomed. Mater.
,
62
, pp.
481
494
.10.1016/j.jmbbm.2016.05.027
11.
Maliaris
,
G.
, and
Sarafis
,
E.
,
2016
, “
Mechanical Behavior of 3D Printed Stochastic Lattice Structures
,”
Solid State Phenom.
,
258
, pp.
225
228
.10.4028/www.scientific.net/SSP.258.225
12.
Sharif Ullah
,
A. M. M.
,
2018
, “
Design for Additive Manufacturing of Porous Structures Using Stochastic Point-Cloud: A Pragmatic Approach
,”
Comput.-Aided Des. Appl.
,
15
(
1
), pp.
138
146
.10.1080/16864360.2017.1353747
13.
Kang
,
H.
,
Hollister
,
S. J.
,
Marca
,
F. L.
,
Park
,
P.
, and
Lin
,
C. Y.
,
2013
, “
Porous Biodegradable Lumbar Interbody Fusion Cage Design and Fabrication Using Integrated Global-Local Topology Optimization With Laser Sintering
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
101013
.10.1115/1.4025102
14.
Wieding
,
J.
,
Wolf
,
A.
, and
Bader
,
R.
,
2014
, “
Numerical Optimization of Open-Porous Bone Scaffold Structures to Match the Elastic Properties of Human Cortical Bone
,”
J. Mech. Behav. Biomed. Mater.
,
37
, pp.
56
68
.10.1016/j.jmbbm.2014.05.002
15.
Moussa
,
A.
,
Rahman
,
S.
,
Xu
,
M.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2020
, “
Topology Optimization of 3D-Printed Structurally Porous Cage for Acetabular Reinforcement in Total Hip Arthroplasty
,”
J. Mech. Behav. Biomed. Mater.
,
105
, p.
103705
.10.1016/j.jmbbm.2020.103705
16.
Jafari
,
B.
,
Katoozian
,
H. R.
,
Tahani
,
M.
, and
Ashjaee
,
N.
,
2022
, “
A Comparative Study of Bone Remodeling Around Hydroxyapatite-Coated and Novel Radial Functionally Graded Dental Implants Using Finite Element Simulation
,”
Med. Eng. Phys.
,
102
, p.
103775
.10.1016/j.medengphy.2022.103775
17.
Lin
,
D.
,
Li
,
Q.
,
Li
,
W.
,
Zhou
,
S.
, and
Swain
,
M. V.
,
2009
, “
Design Optimization of Functionally Graded Dental Implant for Bone Remodeling
,”
Composites, Part B
,
40
(
7
), pp.
668
675
.10.1016/j.compositesb.2009.04.015
18.
Lin
,
C. L.
,
Lin
,
Y. H.
, and
Chang
,
S. H.
,
2010
, “
Multi-Factorial Analysis of Variables Influencing the Bone Loss of an Implant Placed in the Maxilla: Prediction Using FEA and SED Bone Remodeling Algorithm
,”
J. Biomech.
,
43
(
4
), pp.
644
651
.10.1016/j.jbiomech.2009.10.030
19.
Bashkuev
,
M.
,
Checa
,
S.
,
Postigo
,
S.
,
Duda
,
G.
, and
Schmidt
,
H.
,
2015
, “
Computational Analyses of Different Intervertebral Cages for Lumbar Spinal Fusion
,”
J. Biomech.
,
48
(
12
), pp.
3274
3282
.10.1016/j.jbiomech.2015.06.024
20.
Ghaziani
,
A. O.
,
Soheilifard
,
R.
, and
Kowsar
,
S.
,
2021
, “
The Effect of Functionally Graded Materials on Bone Remodeling Around Osseointegrated Trans-Femoral Prostheses
,”
J. Mech. Behav. Biomed. Mater.
,
118
, p.
104426
.10.1016/j.jmbbm.2021.104426
21.
Parithimarkalaignan
,
S.
, and
Padmanabhan
,
T. V.
,
2013
, “
Osseointegration: An Update
,”
J. Indian Prosthodontic Soc.
,
13
(
1
), pp.
2
6
.10.1007/s13191-013-0252-z
22.
Sturm
,
S.
,
Zhou
,
S.
,
Mai
,
Y. W.
, and
Li
,
Q.
,
2010
, “
On Stiffness of Scaffolds for Bone Tissue Engineering—A Numerical Study
,”
J. Biomech.
,
43
(
9
), pp.
1738
1744
.10.1016/j.jbiomech.2010.02.020
23.
Cheong
,
V. S.
,
Fromme
,
P.
,
Mumith
,
A.
,
Coathup
,
M. J.
, and
Blunn
,
G. W.
,
2018
, “
Novel Adaptive Finite Element Algorithms to Predict Bone Ingrowth in Additive Manufactured Porous Implants
,”
J. Mech. Behav. Biomed. Mater.
,
87
, pp.
230
239
.10.1016/j.jmbbm.2018.07.019
24.
Reznikov
,
N.
,
Boughton
,
O. R.
,
Ghouse
,
S.
,
Weston
,
A. E.
,
Collinson
,
L.
,
Blunn
,
G. W.
,
Jeffers
,
J. R. T.
,
Cobb
,
J. P.
, and
Stevens
,
M. M.
,
2019
, “
Individual Response Variations in Scaffold-Guided Bone Regeneration Are Determined by Independent Strain- and Injury-Induced Mechanisms
,”
Biomaterials
,
194
, pp.
183
194
.10.1016/j.biomaterials.2018.11.026
25.
Van Dijk
,
M.
,
Smit
,
T. H.
,
Sugihara
,
S.
,
Burger
,
E. H.
, and
Wuisman
,
P. I.
,
2002
, “
The Effect of Cage Stiffness on the Rate of Lumbar Interbody Fusion: An In Vivo Model Using Poly(L-Lactic Acid) and Titanium Cages
,”
Spine (Phila Pa 1976)
,
27
(
7
), pp.
682
688
.10.1097/00007632-200204010-00003
26.
Mobbs
,
R. J.
,
Phan
,
K.
,
Assem
,
Y.
,
Pelletier
,
M.
, and
Walsh
,
W. R.
,
2016
, “
Combination Ti/PEEK ALIF Cage for Anterior Lumbar Interbody Fusion: Early Clinical and Radiological Results
,”
J. Clin. Neurosci.
,
34
, pp.
94
99
.10.1016/j.jocn.2016.05.028
27.
Wu
,
S. H.
,
Li
,
Y.
,
Zhang
,
Y. Q.
,
Li
,
X. K.
,
Yuan
,
C. F.
,
Hao
,
Y. L.
,
Zhang
,
Z. Y.
, and
Guo
,
Z.
,
2013
, “
Porous Titanium-6 Aluminum-4 Vanadium Cage Has Better Osseointegration and Less Micromotion Than a Poly-Ether-Ether-Ketone Cage in Sheep Vertebral Fusion
,”
Artif. Organs
,
37
(
12
), pp.
E191
E201
.10.1111/aor.12153
28.
Huang
,
H.
,
Liu
,
J.
,
Wang
,
L.
, and
Fan
,
Y.
,
2021
, “
A Critical Review on the Biomechanical Study of Cervical Interbody Fusion Cage
,”
Med. Novel Technol. Devices
,
11
, p.
100070
.10.1016/j.medntd.2021.100070
29.
Kersten
,
R. F. M. R.
,
Van Gaalen
,
S. M.
,
De Gast
,
A.
, and
Öner
,
F. C.
,
2015
, “
Polyetheretherketone (PEEK) Cages in Cervical Applications: A Systematic Review
,”
Spine J.
,
15
(
6
), pp.
1446
1460
.10.1016/j.spinee.2013.08.030
30.
Perier-Metz
,
C.
,
Duda
,
G. N.
, and
Checa
,
S.
,
2021
, “
Initial Mechanical Conditions Within an Optimized Bone Scaffold Do Not Ensure Bone Regeneration—An in Silico Analysis
,”
Biomech. Model. Mechanobiol.
,
20
(
5
), pp.
1723
1731
.10.1007/s10237-021-01472-2
31.
Cox
,
L. G. E.
,
Van Rietbergen
,
B.
,
Van Donkelaar
,
C. C.
, and
Ito
,
K.
,
2011
, “
Bone Structural Changes in Osteoarthritis as a Result of Mechanoregulated Bone Adaptation: A Modeling Approach
,”
Osteoarthritis Cartilage
,
19
(
6
), pp.
676
682
.10.1016/j.joca.2011.02.007
32.
Schulte
,
F. A.
,
Zwahlen
,
A.
,
Lambers
,
F. M.
,
Kuhn
,
G.
,
Ruffoni
,
D.
,
Betts
,
D.
,
Webster
,
D. J.
, and
Müller
,
R.
,
2013
, “
Strain-Adaptive in Silico Modeling of Bone Adaptation—A Computer Simulation Validated by In Vivo Micro-Computed Tomography Data
,”
Bone
,
52
(
1
), pp.
485
492
.10.1016/j.bone.2012.09.008
33.
Jang
,
I. G.
,
Kim
,
I. Y.
, and
Kwak
,
B. B.
,
2009
, “
Analogy of Strain Energy Density Based Bone-Remodeling Algorithm and Structural Topology Optimization
,”
ASME J. Biomech. Eng.
,
131
(
1
), p.
011012
.10.1115/1.3005202
34.
Huo
,
M.
,
He
,
S.
,
Zhang
,
Y.
,
Feng
,
Y.
, and
Lu
,
J.
,
2022
, “
Simulation on Bone Remodeling With Stochastic Nature of Adult and Elderly Using Topology Optimization Algorithm
,”
J. Biomech.
,
136
, p.
111078
.10.1016/j.jbiomech.2022.111078
35.
Boyle
,
C.
, and
Kim
,
I. Y.
,
2011
, “
Three-Dimensional Micro-Level Computational Study of Wolff's Law Via Trabecular Bone Remodeling in the Human Proximal Femur Using Design Space Topology Optimization
,”
J. Biomech.
,
44
(
5
), pp.
935
942
.10.1016/j.jbiomech.2010.11.029
36.
Boyle
,
C.
, and
Kim
,
I. Y.
,
2011
, “
Comparison of Different Hip Prosthesis Shapes Considering Micro-Level Bone Remodeling and Stress-Shielding Criteria Using Three-Dimensional Design Space Topology Optimization
,”
J. Biomech.
,
44
(
9
), pp.
1722
1728
.10.1016/j.jbiomech.2011.03.038
37.
Hollister
,
S. J.
, and
Kikuchi
,
N.
,
1992
, “
A Comparison of Homogenization and Standard Mechanics Analyses for Periodic Porous Composites
,”
Comput. Mech.
,
10
(
2
), pp.
73
95
.10.1007/BF00369853
38.
Wang
,
H.
,
Wan
,
Y.
,
Li
,
Q.
,
Xia
,
Y.
,
Liu
,
X.
,
Liu
,
Z.
, and
Li
,
X.
,
2020
, “
Porous Fusion Cage Design Via Integrated Global-Local Topology Optimization and Biomechanical Analysis of Performance
,”
J. Mech. Behav. Biomed. Mater.
,
112
, p.
103982
.10.1016/j.jmbbm.2020.103982
39.
Lin
,
C. Y.
,
Hsiao
,
C. C.
,
Chen
,
P. Q.
, and
Hollister
,
S. J.
,
2004
, “
Interbody Fusion Cage Design Using Integrated Global Layout and Local Microstructure Topology Optimization
,”
Spine (Phila Pa 1976)
,
29
(
16
), pp.
1747
1754
.10.1097/01.BRS.0000134573.14150.1A
40.
Arabnejad
,
S.
,
Johnston
,
R.
B.,
Pura
,
J. A.
,
Singh
,
B.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2016
, “
High-Strength Porous Biomaterials for Bone Replacement: A Strategy to Assess the Interplay Between Cell Morphology, Mechanical Properties, Bone Ingrowth and Manufacturing Constraints
,”
Acta Biomater.
,
30
, pp.
345
356
.10.1016/j.actbio.2015.10.048
41.
Melancon
,
D.
,
Bagheri
,
Z. S.
,
Johnston
,
R. B.
,
Liu
,
L.
,
Tanzer
,
M.
, and
Pasini
,
D.
,
2017
, “
Mechanical Characterization of Structurally Porous Biomaterials Built Via Additive Manufacturing: Experiments, Predictive Models, and Design Maps for Load-Bearing Bone Replacement Implants
,”
Acta Biomater.
,
63
, pp.
350
368
.10.1016/j.actbio.2017.09.013
42.
Sigmund
,
O.
,
2007
, “
Morphology-Based Black and White Filters for Topology Optimization
,”
Struct. Multidiscip. Optim.
,
33
(
4–5
), pp.
401
424
.10.1007/s00158-006-0087-x
43.
Liu
,
X.
,
Ma
,
J.
,
Park
,
P.
,
Huang
,
X.
,
Xie
,
N.
, and
Ye
,
X.
,
2017
, “
Biomechanical Comparison of Multilevel Lateral Interbody Fusion With and Without Supplementary Instrumentation: A Three-Dimensional Finite Element Study
,”
BMC Musculoskeletal Disord.
,
18
(
1
), pp.
1
11
.10.1186/s12891-017-1387-6
44.
Lin
,
C. Y.
,
Kang
,
H.
,
Rouleau
,
J. P.
,
Hollister
,
S. J.
, and
La Marca
,
F.
,
2009
, “
Stress Analysis of the Interface Between Cervical Vertebrae End Plates and the Bryan, Prestige LP, and ProDisc-C Cervical Disc Prostheses: An In Vivo Image-Based Finite Element Study
,”
Spine (Phila Pa 1976)
,
34
(
15
), pp.
1554
1560
.10.1097/BRS.0b013e3181aa643b
45.
Li
,
S.
,
Demirci
,
E.
, and
Silberschmidt
,
V. V.
,
2013
, “
Variability and Anisotropy of Mechanical Behavior of Cortical Bone in Tension and Compression
,”
J. Mech. Behav. Biomed. Mater.
,
21
, pp.
109
120
.10.1016/j.jmbbm.2013.02.021
46.
Lyu
,
L.
,
Yang
,
S.
,
Jing
,
Y.
,
Zhang
,
C.
, and
Wang
,
J.
,
2020
, “
Examining Trabecular Morphology and Chemical Composition of Peri-Scaffold Osseointegrated Bone
,”
J. Orthop. Surg. Res.
,
15
(
1
), pp.
1
9
.10.1186/s13018-020-01931-z
47.
Kim
,
Y. H.
,
Jung
,
T. G.
,
Park
,
E. Y.
,
Kang
,
G. W.
,
Kim
,
K. A.
, and
Lee
,
S. J.
,
2015
, “
Biomechanical Efficacy of a Combined Interspinous Fusion System With a Lumbar Interbody Fusion Cage
,”
Int. J. Precis. Eng. Manuf.
,
16
(
5
), pp.
997
1001
.10.1007/s12541-015-0129-7
48.
Cui
,
W. Q.
,
Won
,
Y. Y.
,
Baek
,
M. H.
,
Lee
,
D. H.
,
Chung
,
Y. S.
,
Hur
,
J. H.
, and
Ma
,
Y. Z.
,
2008
, “
Age-and Region-Dependent Changes in Three-Dimensional Microstructural Properties of Proximal Femoral Trabeculae
,”
Osteoporosis Int.
,
19
(
11
), pp.
1579
1587
.10.1007/s00198-008-0601-7
49.
He
,
S. Y.
,
Zhang
,
Y.
,
Zhou
,
Y.
,
Bao
,
N.
,
Cai
,
Y.
,
Zhou
,
P.
,
Wang
,
P.
,
Li
,
L.
, and
Jiang
,
Q.
,
2020
, “
Modeling Osteoinduction in Titanium Bone Scaffold With a Representative Channel Structure
,”
Mater. Sci. Eng., C
,
117
, p.
111347
.10.1016/j.msec.2020.111347
50.
Jin
,
S. S.
,
He
,
D. Q.
,
Luo
,
D.
,
Wang
,
Y.
,
Yu
,
M.
,
Guan
,
B.
,
Fu
,
Y.
, et al.,
2019
, “
A Biomimetic Hierarchical Nanointerface Orchestrates Macrophage Polarization and Mesenchymal Stem Cell Recruitment to Promote Endogenous Bone Regeneration
,”
ACS Nano
,
13
(
6
), pp.
6581
6595
.10.1021/acsnano.9b00489
51.
Sumner
,
D. R.
,
2015
, “
Long-Term Implant Fixation and Stress-Shielding in Total Hip Replacement
,”
J. Biomech.
,
48
(
5
), pp.
797
800
.10.1016/j.jbiomech.2014.12.021
52.
Weinans
,
H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1992
, “
The Behavior of Adaptive Bone-Remodeling Simulation Models
,”
J. Biomech.
,
25
(
12
), pp.
1425
1441
.10.1016/0021-9290(92)90056-7
53.
Huiskes
,
R.
,
Ruimerman
,
R.
,
van Lenthe
,
G. H.
, and
Janssen
,
J. D.
,
2000
, “
Effects of Mechanical Forces on Maintenance and Adaptation of Form in Trabecular Bone
,”
Nature
,
405
(
6787
), pp.
704
706
.10.1038/35015116
54.
Cresswell
,
E. N.
,
Goff
,
M. G.
,
Nguyen
,
T. M.
,
Lee
,
W. X.
, and
Hernandez
,
C. J.
,
2016
, “
Spatial Relationships Between Bone Formation and Mechanical Stress Within Cancellous Bone
,”
J. Biomech.
,
49
(
2
), pp.
222
228
.10.1016/j.jbiomech.2015.12.011
55.
Nasello
,
G.
,
Vautrin
,
A.
,
Pitocchi
,
J.
,
Wesseling
,
M.
,
Kuiper
,
J. H.
,
Pérez
,
M. Á.
, and
García-Aznar
,
J. M.
,
2021
, “
Mechano-Driven Regeneration Predicts Response Variations in Large Animal Model Based on Scaffold Implantation Site and Individual Mechano-Sensitivity
,”
Bone
,
144
, p.
115769
.10.1016/j.bone.2020.115769
56.
Zheng
,
Y.
,
Zhang
,
T.
,
Wei
,
Q.
,
Fan
,
D.
,
Liu
,
X.
,
Li
,
W.
,
Song
,
C.
,
Tian
,
Y.
,
Cai
,
H.
, and
Liu
,
Z.
,
2020
, “
Improved Osseointegration With RhBMP-2 Intraoperatively Loaded in a Specifically Designed 3D-Printed Porous Ti6Al4V Vertebral Implant
,”
Biomater. Sci.
,
8
(
5
), pp.
1279
1289
.10.1039/C9BM01655D
57.
Li
,
P.
,
Jiang
,
W.
,
Yan
,
J.
,
Hu
,
K.
,
Han
,
Z.
,
Wang
,
B.
,
Zhao
,
Y.
, et al.,
2019
, “
A Novel 3D Printed Cage With Microporous Structure and In Vivo Fusion Function
,”
J. Biomed. Mater. Res., Part A
,
107
(
7
), pp.
1386
1392
.10.1002/jbm.a.36652
58.
McGilvray
,
K. C.
,
Easley
,
J.
,
Seim
,
H. B.
,
Regan
,
D.
,
Berven
,
S. H.
,
Hsu
,
W. K.
,
Mroz
,
T. E.
, and
Puttlitz
,
C. M.
,
2018
, “
Bony Ingrowth Potential of 3D-Printed Porous Titanium Alloy: A Direct Comparison of Interbody Cage Materials in an In Vivo Ovine Lumbar Fusion Model
,”
Spine J.
,
18
(
7
), pp.
1250
1260
.10.1016/j.spinee.2018.02.018
59.
Zhang
,
W.
,
Sun
,
C.
,
Zhu
,
J.
,
Zhang
,
W.
,
Leng
,
H.
, and
Song
,
C.
,
2020
, “
3D Printed Porous Titanium Cages Filled With Simvastatin Hydrogel Promotes Bone Ingrowth and Spinal Fusion in Rhesus Macaques
,”
Biomater. Sci.
,
8
(
15
), pp.
4147
4156
.10.1039/D0BM00361A
60.
Cohen
,
D. O.
,
Aboutaleb
,
S. M. G.
,
Johnson
,
A. W.
, and
Norato
,
J. A.
,
2021
, “
Bone Adaptation-Driven Design of Periodic Scaffolds
,”
ASME J. Mech. Des.
,
143
(
12)
, p.
121701
.10.1115/1.4050928
61.
Li
,
L.
,
Shi
,
J.
,
Zhang
,
K.
,
Yang
,
L.
,
Yu
,
F.
,
Zhu
,
L.
,
Liang
,
H.
,
Wang
,
X.
, and
Jiang
,
Q.
,
2019
, “
Early Osteointegration Evaluation of Porous Ti6Al4V Scaffolds Designed Based on Triply Periodic Minimal Surface Models
,”
J. Orthop. Transl.
,
19
, pp.
94
105
.10.1016/j.jot.2019.03.003
62.
Bobbert
,
F. S. L.
,
Lietaert
,
K.
,
Eftekhari
,
A. A.
,
Pouran
,
B.
,
Ahmadi
,
S. M.
,
Weinans
,
H.
, and
Zadpoor
,
A. A.
,
2017
, “
Additively Manufactured Metallic Porous Biomaterials Based on Minimal Surfaces: A Unique Combination of Topological, Mechanical, and Mass Transport Properties
,”
Acta Biomater.
,
53
, pp.
572
584
.10.1016/j.actbio.2017.02.024
63.
Chen
,
Z.
,
Klein
,
T.
,
Murray
,
R. Z.
,
Crawford
,
R.
,
Chang
,
J.
,
Wu
,
C.
, and
Xiao
,
Y.
,
2016
, “
Osteoimmunomodulation for the Development of Advanced Bone Biomaterials
,”
Mater. Today
,
19
(
6
), pp.
304
321
.10.1016/j.mattod.2015.11.004
You do not currently have access to this content.