Abstract

Injuries in the anterior cruciate ligament (ACL), including partial tear and lengthening of the ACL, change the dynamic function of the knee. However, there is a lack of information on the effect of ACL partial tear on knee kinematics during walking. This study aimed to investigate the effects of different levels of ACL injuries on knee stability and ACL tensional force to identify the critical injury level. Motion data of five normal subjects were acquired along with the ground reaction force. A knee model with 14 ligaments was developed using cadaveric specimen data. The initial length and stiffness of the ACL were changed to develop ACL-injured knee models. Musculoskeletal simulations of the knee models were performed using the measured gait data. The average tibial anterior translation increased significantly by 2.6 ± 0.7 mm when the ACL stiffness decreased to 25% of its original stiffness. The average tibial anterior translation increased significantly by 2.6 ± 0.3 mm at an increase in initial length of 10%. The knee with partial ACL tear had a nonlinear decrease in ACL forces owing to the increase in the level of ACL injury, while the knee with ACL lengthening had linear decreased ACL forces. The partial tear of the ACL caused translational instability, while the complete tear caused both rotational and translational instabilities during the musculoskeletal walking simulation. This study presents the effects of partial ACL injuries on joint kinematics and ACL tensional force during the dynamic motion of walking.

References

1.
Rayan
,
F.
,
Nanjayan
,
S. K.
,
Quah
,
C.
,
Ramoutar
,
D.
,
Konan
,
S.
, and
Haddad
,
F. S.
,
2015
, “
Review of Evolution of Tunnel Position in Anterior Cruciate Ligament Reconstruction
,”
World J. Orthop.
,
6
(
2
), pp.
252
262
.10.5312/wjo.v6.i2.252
2.
Gobbi
,
A.
, and
Whyte
,
G. P.
,
2018
, “
Long-Term Outcomes of Primary Repair of the Anterior Cruciate Ligament Combined With Biologic Healing Augmentation to Treat Incomplete Tears
,”
Am. J. Sport Med.
,
46
(
14
), pp.
3368
3377
.10.1177/0363546518805740
3.
Chmielewski
,
T. L.
,
Rudolph
,
K. S.
,
Fitzgerald
,
G. K.
,
Axe
,
M. J.
, and
Snyder-Mackler
,
L.
,
2001
, “
Biomechanical Evidence Supporting a Differential Response to Acute ACL Injury
,”
Clin. Biomech. (Bristol, Avon)
,
16
(
7
), pp.
586
591
.10.1016/S0268-0033(01)00050-X
4.
Gokeler
,
A.
,
Neuhaus
,
D.
,
Benjaminse
,
A.
,
Grooms
,
D. R.
, and
Baumeister
,
J.
,
2019
, “
Principles of Motor Learning to Support Neuroplasticity After ACL Injury: Implications for Optimizing Performance and Reducing Risk of Second ACL Injury (Vol 49, pg 853, 2019)
,”
Sports Med.
,
49
(
6
), pp.
979
979
.10.1007/s40279-019-01078-w
5.
Andriacchi
,
T. P.
,
Briant
,
P. L.
,
Bevill
,
S. L.
, and
Koo
,
S.
,
2006
, “
Rotational Changes at the Knee After ACL Injury Cause Cartilage Thinning
,”
Clin. Orthop. Relat. Res.
,
442
, pp.
39
44
.10.1097/01.blo.0000197079.26600.09
6.
Pujol
,
N.
,
Colombet
,
P.
,
Cucurulo
,
T.
,
Graveleau
,
N.
,
Hulet
,
C.
,
Panisset
,
J. C.
,
Potel
,
J. F.
,
Servien
,
E.
,
Sonnery-Cottet
,
B.
,
Trojani
,
C.
,
Djian
,
P.
, and
SFA
,
F. A. S.
,
2012
, “
Natural History of Partial Anterior Cruciate Ligament Tears: A Systematic Literature Review
,”
Orthop. Traumatol. Surg.
,
98
(
8
), pp.
S160
S164
.10.1016/j.otsr.2012.09.013
7.
Berns
,
G. S.
,
Hull
,
M. L.
, and
Patterson
,
H. A.
,
1992
, “
Strain in the Anteromedial Bundle of the Anterior Cruciate Ligament Under Combination Loading
,”
J. Orthop. Res.
,
10
(
2
), pp.
167
176
.10.1002/jor.1100100203
8.
Lohmander
,
L. S.
,
Englund
,
P. M.
,
Dahl
,
L. L.
, and
Roos
,
E. M.
,
2007
, “
The Long-Term Consequence of Anterior Cruciate Ligament and Meniscus Injuries - Osteoarthritis
,”
Am. J. Sport Med.
,
35
(
10
), pp.
1756
1769
.10.1177/0363546507307396
9.
Wang
,
L. J.
,
Zeng
,
N.
,
Yan
,
Z. P.
,
Li
,
J. T.
, and
Ni
,
G. X.
,
2020
, “
Post-Traumatic Osteoarthritis Following ACL Injury
,”
Arthritis Res. Ther.
,
22
(
1
), pp.
1
8
.10.1186/s13075-020-02156-5
10.
Liu
,
W.
,
Maitland
,
M. E.
, and
Bell
,
G. D.
,
2002
, “
A Modeling Study of Partial ACL Injury: Simulated KT-2000 Arthrometer Tests
,”
ASME J. Biomech. Eng.
,
124
(
3
), pp.
294
301
.10.1115/1.1468636
11.
Cone
,
S. G.
,
Lambeth
,
E. P.
,
Piedrahita
,
J. A.
,
Spang
,
J. T.
, and
Fisher
,
M. B.
,
2020
, “
Joint Laxity Varies in Response to Partial and Complete Anterior Cruciate Ligament Injuries Throughout Skeletal Growth
,”
J. Biomech.
,
101
, p.
109636
.10.1016/j.jbiomech.2020.109636
12.
Hayashi
,
R.
,
Kondo
,
E.
,
Tohyama
,
H.
,
Saito
,
T.
, and
Yasuda
,
K.
,
2008
, “
In Vivo Local Administration of Osteogenic Protein-1 Increases Structural Properties of the Overstretched Anterior Cruciate Ligament With Partial Midsubstance Laceration - A Biomechanical Study in Rabbits
,”
J. Bone Jt. Surg. Br.
,
90b
(
10
), pp.
1392
1400
.10.1302/0301-620X.90B10.20924
13.
Lopez
,
M. J.
,
Robinson
,
S. O.
,
Quinn
,
M. M.
,
Hosgood
,
G.
, and
Markel
,
M. D.
,
2006
, “
In Vivo Evaluation of Intra-Articular Protection in a Novel Model of Canine Cranial Cruciate Ligament Mid-Substance Elongation Injury
,”
Vet. Surg.
,
35
(
8
), pp.
711
720
.10.1111/j.1532-950X.2006.00215.x
14.
Sommerlath
,
K.
,
Odensten
,
M.
, and
Lysholm
,
J.
,
1992
, “
The Late Course of Acute Partial Anterior Cruciate Ligament Tears - A 9-Year to 15-Year Follow-Up Evaluation
,”
Clin. Orthop. Relat. Res.
,
281
, pp.
152
158
.10.1097/00003086-199208000-00025
15.
Kondo
,
E.
,
Yasuda
,
K.
,
Yamanaka
,
M.
,
Minami
,
A.
, and
Tohyama
,
H.
,
2003
, “
Biomechanical Evaluation of a Newly Devised Model for the Elongation-Type Anterior Cruciate Ligament Injury With Partial Laceration and Permanent Elongation
,”
Clin. Biomech.
,
18
(
10
), pp.
942
949
.10.1016/S0268-0033(03)00171-2
16.
Andriacchi
,
T. P.
, and
Dyrby
,
C. O.
,
2005
, “
Interactions Between Kinematics and Loading During Walking for the Normal and ACL Deficient Knee
,”
J. Biomech.
,
38
(
2
), pp.
293
298
.10.1016/j.jbiomech.2004.02.010
17.
DeFrate
,
L. E.
,
Papannagari
,
R.
,
Gill
,
T. J.
,
Moses
,
J. M.
,
Pathare
,
N. P.
, and
Li
,
G.
,
2006
, “
The 6 Degrees of Freedom Kinematics of the Knee After Anterior Cruciate Ligament Deficiency - An In Vivo Imaging Analysis
,”
Am. J. Sport Med.
,
34
(
8
), pp.
1240
1246
.10.1177/0363546506287299
18.
Rangger
,
C.
,
Daniel
,
D. M.
,
Stone
,
M. L.
, and
Kaufman
,
K.
,
1993
, “
Diagnosis of an ACL Disruption With KT-1000 Arthrometer Measurements
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
1
(
1
), pp.
60
66
.10.1007/BF01552161
19.
Gao
,
B.
, and
Zheng
,
N. Q.
,
2010
, “
Alterations in Three-Dimensional Joint Kinematics of Anterior Cruciate Ligament-Deficient and -Reconstructed Knees During Walking
,”
Clin. Biomech.
,
25
(
3
), pp.
222
229
.10.1016/j.clinbiomech.2009.11.006
20.
Zhang
,
L. Q.
,
Shiavi
,
R. G.
,
Limbird
,
T. J.
, and
Minorik
,
J. M.
,
2003
, “
Six Degrees-of-Freedom Kinematics of ACL Deficient Knees During Locomotion-Compensatory Mechanism
,”
Gait Posture
,
17
(
1
), pp.
34
42
.10.1016/S0966-6362(02)00052-8
21.
Kocher
,
M. S.
,
Micheli
,
L. J.
,
Zurakowski
,
D.
, and
Luke
,
A.
,
2002
, “
Partial Tears of the Anterior Cruciate Ligament in Children and Adolescents
,”
Am. J. Sport Med.
,
30
(
5
), pp.
697
703
.10.1177/03635465020300051201
22.
Colombet
,
P.
,
Dejour
,
D.
,
Panisset
,
J. C.
,
Siebold
,
R.
, and
French Arthroscopy
,
S.
,
2010
, “
Current Concept of Partial Anterior Cruciate Ligament Ruptures
,”
Orthop. Traumatol. Surg. Res.
,
96
(
8
), pp.
S109
S118
.10.1016/j.otsr.2010.09.003
23.
Noyes
,
F. R.
,
Mooar
,
L. A.
,
Moorman
,
C. T.
, and
Mcginniss
,
G. H.
,
1989
, “
Partial Tears of the Anterior Cruciate Ligament - Progression to Complete Ligament Deficiency
,”
J. Bone Jt. Surg. Br.
,
71-B
(
5
), pp.
825
833
.10.1302/0301-620X.71B5.2584255
24.
Barrack
,
R. L.
,
Buckley
,
S. L.
,
Bruckner
,
J. D.
,
Kneisl
,
J. S.
, and
Alexander
,
A. H.
,
1990
, “
Partial Versus Complete Acute Anterior Cruciate Ligament Tears. The Results of Nonoperative Treatment
,”
J. Bone Jt. Surg. Br.
,
72-B
(
4
), pp.
622
624
.10.1302/0301-620X.72B4.2380216
25.
Li
,
G.
,
Suggs
,
J.
, and
Gill
,
T.
,
2002
, “
The Effect of Anterior Cruciate Ligament Injury on Knee Joint Function Under a Simulated Muscle Load: A Three-Dimensional Computational Simulation
,”
Ann. Biomed. Eng.
,
30
(
5
), pp.
713
720
.10.1114/1.1484219
26.
Borbon
,
C. A.
,
Mouzopoulos
,
G.
, and
Siebold
,
R.
,
2012
, “
Why Perform an ACL Augmentation?
,”
Knee Surg. Sport Trautmatol. Arthos.
,
20
(
2
), pp.
245
251
.10.1007/s00167-011-1565-2
27.
Buda
,
R.
,
Di Caprio
,
F.
,
Giuriati
,
L.
,
Luciani
,
D.
,
Busacca
,
M.
, and
Giannini
,
S.
,
2008
, “
Partial ACL Tears Augmented With Distally Inserted Hamstring Tendons and Over-the-Top Fixation: An MRI Evaluation
,”
Knee
,
15
(
2
), pp.
111
116
.10.1016/j.knee.2007.12.002
28.
Mansouri
,
M.
,
Clark
,
A. E.
,
Seth
,
A.
, and
Reinbolt
,
J. A.
,
2016
, “
Rectus Femoris Transfer Surgery Affects Balance Recovery in Children With Cerebral Palsy: A Computer Simulation Study
,”
Gait Posture
,
43
, pp.
24
30
.10.1016/j.gaitpost.2015.08.016
29.
Purevsuren
,
T.
,
Kim
,
K.
,
Nha
,
K. W.
, and
Kim
,
Y. H.
,
2016
, “
Evaluation of Compressive and Shear Joint Forces on Medial and Lateral Compartments in Knee Joint During Walking Before and After Medial Open-Wedge High Tibial Osteotomy
,”
Int. J. Precis. Eng. Manuf.
,
17
(
10
), pp.
1365
1370
.10.1007/s12541-016-0162-1
30.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
,
2008
, “
A Computational Framework to Predict Post-Treatment Outcome for Gait-Related Disorders
,”
Med. Eng. Phys.
,
30
(
4
), pp.
434
443
.10.1016/j.medengphy.2007.05.005
31.
Shelburne
,
K. B.
,
Pandy
,
M. G.
,
Anderson
,
F. C.
, and
Torry
,
M. R.
,
2004
, “
Pattern of Anterior Cruciate Ligament Force in Normal Walking
,”
J. Biomech.
,
37
(
6
), pp.
797
805
.10.1016/j.jbiomech.2003.10.010
32.
Koo
,
Y. J.
,
Jung
,
Y.
,
Seon
,
J. K.
, and
Koo
,
S.
,
2020
, “
Anatomical ACL Reconstruction Can Restore the Natural Knee Kinematics Than Isometric ACL Reconstruction During the Stance Phase of Walking
,”
Int J Precis Eng Man
,
21
(
6
), pp.
1127
1134
.10.1007/s12541-020-00319-7
33.
Harris
,
M. D.
,
Cyr
,
A. J.
,
Ali
,
A. A.
,
Fitzpatrick
,
C. K.
,
Rullkoetter
,
P. J.
,
Maletsky
,
L. P.
, and
Shelburne
,
K. B.
,
2016
, “
A Combined Experimental and Computational Approach to Subject-Specific Analysis of Knee Joint Laxity
,”
ASME J. Biomech. Eng.
,
138
(
8
), p.
081004
.10.1115/1.4033882
34.
Thelen
,
D. G.
,
Won Choi
,
K.
, and
Schmitz
,
A. M.
,
2014
, “
Co-Simulation of Neuromuscular Dynamics and Knee Mechanics During Human Walking
,”
ASME J. Biomech. Eng.
,
136
(
2
), p.
021033
.10.1115/1.4026358
35.
Marra
,
M. A.
,
Vanheule
,
V.
,
Fluit
,
R.
,
Koopman
,
B. H. F. J. M.
,
Rasmussen
,
J.
,
Verdonschot
,
N.
, and
Andersen
,
M. S.
,
2015
, “
A Subject-Specific Musculoskeletal Modeling Framework to Predict In Vivo Mechanics of Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
, 137(2), p.
020904
.10.1115/1.4029258
36.
Kondo
,
E.
,
Yasuda
,
K.
,
Yamanaka
,
M.
,
Minami
,
A.
, and
Tohyama
,
H.
,
2005
, “
Effects of Administration of Exogenous Growth Factors on Biomechanical Properties of the Elongation-Type Anterior Cruciate Ligament Injury With Partial Laceration
,”
Am. J. Sport Med.
,
33
(
2
), pp.
188
196
.10.1177/0363546504266979
37.
Homyk
,
A.
,
Orsi
,
A.
,
Wibby
,
S.
,
Yang
,
N.
,
Nayeb-Hashemi
,
H.
, and
Canavan
,
P. K.
,
2012
, “
Failure Locus of the Anterior Cruciate Ligament: 3D Finite Element Analysis
,”
Comput. Method Biomech.
,
15
(
8
), pp.
865
874
.10.1080/10255842.2011.565412
38.
Karakilic
,
B.
,
Taskiran
,
E.
,
Doganavsargil
,
B.
,
Uzun
,
B.
,
Celik
,
S.
, and
Bicer
,
E. K.
,
2015
, “
Central Defect Type Partial ACL Injury Model on Goat Knees: The Effect of Infrapatellar Fat Pad Excision
,”
J. Orthop. Surg. Res.
,
10
(
1
), pp.
1
8
.10.1186/s13018-015-0281-x
39.
Gupta
,
R.
,
Kapoor
,
A.
,
Mittal
,
N.
,
Soni
,
A.
,
Khatri
,
S.
, and
Masih
,
G. D.
,
2018
, “
The Role of Meniscal Tears and Meniscectomy in the Mechanical Stability of the Anterior Cruciate Ligament Deficient Knee
,”
Knee
,
25
(
6
), pp.
1051
1056
.10.1016/j.knee.2018.09.007
40.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1991
, “
Ligament-Bone Interaction in a Three-Dimensional Model of the Knee
,”
ASME J. Biomech. Eng.
,
113
(
3
), pp.
263
269
.10.1115/1.2894883
41.
Baldwin
,
M. A.
,
Clary
,
C.
,
Maletsky
,
L. P.
, and
Rullkoetter
,
P. J.
,
2009
, “
Verification of Predicted Specimen-Specific Natural and Implanted Patellofemoral Kinematics During Simulated Deep Knee Bend
,”
J. Biomech.
,
42
(
14
), pp.
2341
2348
.10.1016/j.jbiomech.2009.06.028
42.
Andersen
,
M. S.
,
de Zee
,
M.
,
Damsgaard
,
M.
,
Nolte
,
D.
, and
Rasmussen
,
J.
,
2017
, “
Introduction to Force-Dependent Kinematics: Theory and Application to Mandible Modeling
,”
ASME J. Biomech. Eng.
,
139
(
9
), p.
091001
.10.1115/1.4037100
43.
Damsgaard
,
M.
,
Rasmussen
,
J.
,
Christensen
,
S. T.
,
Surma
,
E.
, and
de Zee
,
M.
,
2006
, “
Analysis of Musculoskeletal Systems in the AnyBody Modeling System
,”
Simul. Model. Pract. Ther.
,
14
(
8
), pp.
1100
1111
.10.1016/j.simpat.2006.09.001
44.
Jonsson
,
H.
,
Karrholm
,
J.
, and
Elmqvist
,
L. G.
,
1993
, “
Laxity After Cruciate Ligament Injury in 94 Knees - the Kt-1000 Arthrometer Versus Roentgen Stereophotogrammetry
,”
Acta Orthop. Scand.
,
64
(
5
), pp.
567
570
.10.3109/17453679308993694
45.
Spong
,
M. W.
, and
Vidyasagar
,
M.
,
1989
,
Robot Dynamics and Control
,
Wiley
,
New York
.
46.
Wu
,
G.
, and
Cavanagh
,
P. R.
,
1995
, “
ISB Recommendations for Standardization in the Reporting of Kinematic Data
,”
J. Biomech.
,
28
(
10
), pp.
1257
1261
.10.1016/0021-9290(95)00017-C
47.
Bak
,
K.
,
Scavenius
,
M.
,
Hansen
,
S.
,
Norring
,
K.
,
Jensen
,
K. H.
, and
Jorgensen
,
U.
,
1997
, “
Isolated Partial Rupture of the Anterior Cruciate Ligament. Long-Term Follow-Up of 56 Cases
,”
Knee Surg. Sports Traumatol. Arthrosc.
,
5
(
2
), pp.
66
71
.10.1007/s001670050028
48.
Sandberg
,
R.
, and
Balkfors
,
B.
,
1987
, “
Partial Rupture of the Anterior Cruciate Ligament. Natural Course
,”
Clin. Orthop. Relat. Res.
,
220
, pp.
176
178
.https://pubmed.ncbi.nlm.nih.gov/3594988/
49.
Cuppone
,
M.
, and
Seedhom
,
B. B.
,
2001
, “
Effect of Implant Lengthening and Mode of Fixation on Knee Laxity After ACL Reconstruction With an Artificial Ligament: A Cadaveric Study
,”
J. Orthop. Sci.
,
6
(
3
), pp.
253
261
.10.1007/s007760100044
50.
Grover
,
D.
,
Thompson
,
D.
,
Hull
,
M. L.
, and
Howell
,
S. M.
,
2006
, “
Empirical Relationship Between Lengthening an Anterior Cruciate Ligament Graft and Increases in Knee Anterior Laxity: A Human Cadaveric Study
,”
ASME J. Biomech. Eng.
,
128
(
6
), pp.
969
972
.10.1115/1.2378931
51.
Hollis
,
J. M.
,
Takai
,
S.
,
Adams
,
D. J.
,
Horibe
,
S.
, and
Woo
,
S. L. Y.
,
1991
, “
The Effects of Knee Motion and External Loading on the Length of the Anterior Cruciate Ligament (Acl) - A Kinematic Study
,”
ASME J. Biomech. Eng.
,
113
(
2
), pp.
208
214
.10.1115/1.2891236
52.
Taylor
,
K. A.
,
Cutcliffe
,
H. C.
,
Queen
,
R. M.
,
Utturkar
,
G. M.
,
Spritzer
,
C. E.
,
Garrett
,
W. E.
, and
DeFrate
,
L. E.
,
2013
, “
In Vivo Measurement of ACL Length and Relative Strain During Walking
,”
J. Biomech.
,
46
(
3
), pp.
478
483
.10.1016/j.jbiomech.2012.10.031
53.
Faul
,
F.
,
Erdfelder
,
E.
,
Lang
,
A. G.
, and
Buchner
,
A.
,
2007
, “
G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences
,”
Behav. Res. Methods
,
39
(
2
), pp.
175
191
.10.3758/BF03193146
54.
Mcgraw
,
K. O.
, and
Wong
,
S. P.
,
1992
, “
A Common Language Effect Size Statistic
,”
Psychol. Bull.
,
111
(
2
), pp.
361
365
.10.1037/0033-2909.111.2.361
55.
Siebold
,
R.
, and
Fu
,
F. H.
,
2008
, “
Assessment and Augmentation of Symptomatic Anteromedial or Posterolateral Bundle Tears of the Anterior Cruciate Ligament
,”
Arthrosc. J. Arthrosc. Relat. Surg.
,
24
(
11
), pp.
1289
1298
.10.1016/j.arthro.2008.06.016
56.
Yasuda
,
K.
,
van Eck
,
C. F.
,
Hoshino
,
Y.
,
Fu
,
F. H.
, and
Tashman
,
S.
,
2011
, “
Anatomic Single- and Double-Bundle Anterior Cruciate Ligament Reconstruction, Part 1 Basic Science
,”
Am. J. Sport Med.
,
39
(
8
), pp.
1789
1799
.10.1177/0363546511402659
You do not currently have access to this content.