Abstract

Stress shielding is an important factor in the internal fixation of a fracture. To explore the regularity of stress shielding in internal fixation, a simplified model of a comminuted femoral shaft fracture bridged by a locking plate was established and finite element analysis was performed to analyze the load distribution between the plate and femur from the proximal end of the femur to the fracture line and investigate the stress shielding degree of the plate on the bone. The stress, deformation, and axial compressive force distribution of four internal fixation schemes under compression were obtained, and the stress shielding degrees on each section was calculated. To compare the regularity of stress shielding and flow distribution, the relationship between the compressive force increment and stress shielding degree was established. The normalized curves of compressive force increment with the plate section position were compared with the flow distribution in a Z-type manifold, a parallel pipe system similar to an internal fixation system in structure and working characteristics. For quantitative comparison, the similarity between normalized curves of the compressive force increment and simulated flow distribution was calculated. The regularity of load distribution along the section position of the plate was similar to the flow distribution in the Z-type manifold. Therefore, the flow distribution pattern of the Z-type manifold can be used to characterize the regularity of load distribution in internal fixation. This study provided a new method to characterize the stress shielding degree of a locking plate on bone.

References

1.
Bagheri
,
Z. S.
,
Avval
,
P. T.
,
Bougherara
,
H.
,
Aziz
,
M.
,
Schemitsch
,
E. H.
, and
Zdero
,
R.
,
2014
, “
Biomechanical Analysis of a New Carbon Fiber/Flax/Epoxy Bone Fracture Plate Shows Less Stress Shielding Compared to a Standard Clinical Metal Plate
,”
ASME J. Biomech. Eng.
,
136
(
9
), p. 091002.10.1115/1.4027669
2.
Zhao
,
X.
,
Jing
,
W.
,
Yun
,
Z.
,
Tong
,
X.
,
Li
,
Z.
,
Yu
,
J.
,
Zhang
,
Y.
,
Zhang
,
Y.
,
Wang
,
Z.
,
Wen
,
Y.
,
Cai
,
H.
,
Wang
,
J.
,
Ma
,
B.
, and
Zhao
,
H.
, and,
2021
, “
An Experimental Study on Stress-Shielding Effects of Locked Compression Plates in Fixing Intact Dog Femur
,”
J. Orthop. Surg. Res.
,
16
(
1
), p. 97.10.1186/s13018-021-02238-3
3.
Uhthoff
,
H. K.
,
Poitras
,
P.
, and
Backman
,
D. S.
,
2006
, “
Internal Plate Fixation of Fractures: Short History and Recent Developments
,”
J. Orthop. Sci.
,
11
(
2
), pp.
118
126
.10.1007/s00776-005-0984-7
4.
Mckibbin
,
B.
,
1978
, “
The Biology of Fracture Healing in Long Bones
,”
J. Bone Jt. Surg.-Br.
,
60-B
(
2
), pp.
150
162
.10.1302/0301-620X.60B2.350882
5.
Ramakrishna
,
K.
,
Sridhar
,
I.
,
Sivashanker
,
S.
,
Khong
,
K. S.
, and
Ghista
,
D. N.
,
2004
, “
Design of Fracture Fixation Plate for Necessary and Sufficient Bone Stress Shielding
,”
JSME Int. J. Ser. C-Mech. Syst. Mach. Elem. Manuf.
,
47
(
4
), pp.
1086
1094
.10.1299/jsmec.47.1086
6.
Goel, V. K., Lim, T. H., Gwon, J., Chen, J. Y., Winterbottom, J. M., Park, J. B., Weinstein J. N., and Ahn, J. Y., 1991, “Effects of Rigidity of an Internal Fixation Device a Comprehensive Biomechanical Investigation,”
Spine
, 16(3), pp. S155–S161. 10.1097/00007632-199103001-00023
7.
Ramakrishna
,
K.
,
Sridhar
,
I.
,
Sivashanker
,
S.
,
Ganesh
,
V. K.
, and
Ghista
,
D. N.
,
2005
, “
Analysis of an Internal Fixation of a Long Bone Fracture
,”
J. Mech. Med. Biol.
,
05
(
01
), pp.
89
103
.10.1142/S0219519405001333
8.
Ganesh
,
V. K.
,
Ramakrishna
,
K.
, and
Ghista
,
D. N.
,
2005
, “
Biomechanics of Bone-Fracture Fixation by Stiffness-Graded Plates in Comparison With Stainless-Steel Plates
,”
Biomed. Eng. Online
,
4
(
1
), pp.
1
15
.10.1186/1475-925X-4-46
9.
Fouad
,
H.
,
2011
, “
Assessment of Function-Graded Materials as Fracture Fixation Bone-Plates Under Combined Loading Conditions Using Finite Element Modelling
,”
Med. Eng. Phys.
,
33
(
4
), pp.
456
463
.10.1016/j.medengphy.2010.11.013
10.
Fice
,
J.
, and
Chandrashekar
,
N.
,
2012
, “
Tapered Fracture Fixation Plate Reduces Bone Stress Shielding: A Computational Study
,”
J. Mech. Med. Biol.
,
12
(
04
), p.
1250072
.10.1142/S021951941200506X
11.
Zhou
,
K.
, and
Yang
,
H.
,
2020
, “
Effects of Bone-Plate Material on the Predicted Stresses in the Tibial Shaft Comminuted Fractures: A Finite Element Analysis
,”
J. Mech. Med. Biol.
,
12
(
4
), pp.
1
9
.10.1080/08941939.2020.1836290
12.
Piao
,
C.
,
Wu
,
D.
,
Min
,
L.
, and
Ma
,
H.
,
2014
, “
Stress Shielding Effects of Two Prosthetic Groups After Total Hip Joint Simulation Replacement
,”
J. Orthop. Surg. Res.
,
9
(
1
), pp.
1
8
.10.1186/s13018-014-0071-x
13.
Gefen
,
A.
,
2002
, “
Computational Simulations of Stress Shielding and Sone Resorption Around Existing and Computer-Designed Orthopaedic Screws
,”
Med. Biol. Eng. Comput.
,
40
(
3
), pp.
311
322
.10.1007/BF02344213
14.
Haase
,
K.
, and
Rouhi
,
G.
,
2013
, “
Prediction of Stress Shielding Around an Orthopedic Screw: Using Stress and Strain Energy Density as Mechanical Stimuli
,”
Comput. Biol. Med.
,
43
(
11
), pp.
1748
1757
.10.1016/j.compbiomed.2013.07.032
15.
Saidpour
,
S. H.
,
2006
, “
Assessment of Carbon Fibre Composite Fracture Fixation Plate Using Finite Element Analysis
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1157
1163
.10.1007/s10439-006-9102-z
16.
Pigford
,
R. L.
,
Ashraf
,
M.
, and
Miron
,
Y. D.
,
1983
, “
Flow Distribution in Piping Manifolds
,”
Ind. Eng. Chem. Fundam.
,
22
(
4
), pp.
463
471
.10.1021/i100012a019
17.
Wang
,
C. C.
,
Yang
,
K. S.
,
Tsai
,
J. S.
, and
Chen
,
I. Y.
,
2011
, “
Characteristics of Flow Distribution in Compact Parallel Flow Heat Exchangers, Part II: Modified Inlet Header
,”
Appl. Therm. Eng.
,
31
(
16
), pp.
3235
3242
.10.1016/j.applthermaleng.2011.06.003
18.
Fouda
,
N.
,
Mostafa
,
R.
, and
Saker
,
A.
,
2019
, “
Numerical Study of Stress Shielding Reduction at Fractured Bone Using Metallic and Composite Bone-Plate Models
,”
Ain Shams Eng. J.
,
10
(
3
), pp.
481
488
.10.1016/j.asej.2018.12.005
19.
Nassiri
,
M.
,
MacDonald
,
B.
, and
O'Byrne
,
J. M.
,
2013
, “
Computational Modelling of Long Bone Fractures Fixed With Locking Plates - How Can the Risk of Implant Failure Be Reduced
,”
J. Orthop.
,
10
(
1
), pp.
29
37
.10.1016/j.jor.2013.01.001
20.
Gautier
,
E.
, and
Sommer
,
C.
,
2003
, “
Guidelines for the Clinical Application of the LCP
,”
Injury-Int. J. Care Injured
,
34
(
supp-S2
), pp.
63
76
.10.1016/j.injury.2003.09.026
21.
El'Sheikh
,
H. F.
,
MacDonald
,
B. J.
, and
Hashmi
,
M. S. J.
,
2003
, “
Finite Element Simulation of the Hip Joint During Stumbling: A Comparison Between Static and Dynamic Loading
,”
J. Mater. Process Technol.
,
143–144
(
supp-S1
), pp.
249
255
.10.1016/S0924-0136(03)00352-2
22.
Sheng
,
W.
,
Ji
,
A.
,
Fang
,
R.
,
He
,
G.
, and
Chen
,
C.
,
2019
, “
Finite Element- and Design of Experiment-Derived Optimization of Screw Configurations and a Locking Plate for Internal Fixation System
,”
Comput. Math. Methods Med.
,
2019
(
2
), pp.
1
15
.10.1155/2019/5636528
23.
Yang
,
H.
,
Yuan
,
D.
,
Hu
,
H.
,
Jiang
,
Y.
, and
Tang
,
D.
,
2018
, “
Theoretical and Experimental Research on Flow Distribution of Solar Collector System
,”
J. Eng. Thermophys.
,
39
(
7
), pp.
1505
1511
.https://www.researchgate.net/publication/329544990_Theoretical_and_Experimental_Research_on_Flow_Distribution_of_Solar_Collector_System
24.
Siddiqui
,
O. K.
,
Al-Zahrani
,
M.
,
Al-Sarkhi
,
A.
, and
Zubair
,
S. M.
,
2020
, “
Flow Distribution in U- and Z-Type Manifolds: Experimental and Numerical Investigation
,”
Arabian J. Sci. Eng.
,
45
(
7
), pp.
6005
6020
.10.1007/s13369-020-04691-4
25.
Facao
,
J.
,
2015
, “
Optimization of Flow Distribution in Flat Plate Solar Thermal Collectors With Riser and Header Arrangements
,”
Sol. Energy
,
120
, pp.
104
112
.10.1016/j.solener.2015.07.034
26.
Stoffel
,
K.
,
Dieter
,
U.
,
Stachowiak
,
G.
,
Gachter
,
A.
, and
Kuster
,
M. S.
,
2003
, “
Biomechanical Testing of the LCP - How Can Stability in Locked Internal Fixators Be Controlled
,”
Injury-Int. J. Care Injured
,
34
(
supp-S2
), pp.
11
19
.10.1016/j.injury.2003.09.021
You do not currently have access to this content.