Abstract

The mechanical impedance of the joints of the leg governs the body's response to external disturbances, and its regulation is essential for the completion of tasks of daily life. However, it is still unclear how this quantity is regulated at the knee during dynamic tasks. In this work, we introduce a method to estimate the mechanical impedance of spring-mass systems using a torque-controllable exoskeleton with the intention of extending these methods to characterize the mechanical impedance of the human knee during locomotion. We characterize system bandwidth and intrinsic impedance and present a perturbation-based methodology to identify the mechanical impedance of known spring-mass systems. Our approach was able to obtain accurate estimates of stiffness and inertia, with errors under 3% and ∼13–16%, respectively. This work provides a qualitative and quantitative foundation that will enable accurate estimates of knee joint impedance during locomotion in future works.

References

1.
Neptune
,
R. R.
,
Zajac
,
F. E.
, and
Kautz
,
S. A.
,
2004
, “
Muscle Force Redistributes Segmental Power for Body Progression During Walking
,”
Gait Posture
,
19
(
2
), pp.
194
205
.10.1016/S0966-6362(03)00062-6
2.
Winter
,
D. A.
,
1983
, “
Energy Generation and Absorption at the Ankle and Knee During Fast, Natural, and Slow Cadences
,”
Clin. Orthop. Relat. Res.,
(
175
), pp.
147
154
.10.1097/00003086-198305000-00021
3.
Kearney
,
R. E.
, and
Hunter
,
I. W.
,
1990
, “
System Identification of Human Joint Impedance
,”
J. Am. Soc. Inf. Sci.
, 18, pp.
55
87
.
4.
Rouse
,
E. J.
,
Hargrove
,
L. J.
,
Perreault
,
E. J.
, and
Kuiken
,
T. A.
,
2014
, “
Estimation of Human Ankle Impedance During the Stance Phase of Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
4
), pp.
870
878
.10.1109/TNSRE.2014.2307256
5.
Kuo
,
A. D.
, and
Donelan
,
J. M.
,
2010
, “
Dynamic Principles of Gait and Their Clinical Implications
,”
Phys. Ther.
,
90
(
2
), pp.
157
174
.10.2522/ptj.20090125
6.
Burdet
,
E.
,
Osu
,
R.
,
Franklin
,
D. W.
,
Milner
,
T. E.
, and
Kawato
,
M.
,
2001
, “
The Central Nervous System Stabilizes Unstable Dynamics by Learning Optimal Impedance
,”
Nature
,
414
(
6862
), pp.
446
449
.10.1038/35106566
7.
Hu
,
X.
,
Ludvig
,
D.
,
Murray
,
W. M.
, and
Perreault
,
E. J.
,
2017
, “
Using Feedback Control to Reduce Limb Impedance During Forceful Contractions
,”
Sci. Rep.
,
7
(
1
), pp.
1
13
.10.1038/s41598-017-10181-9
8.
Wind
,
A. M.
, and
Rouse
,
E. J.
,
2020
, “
Neuromotor Regulation of Ankle Stiffness is Comparable to Regulation of Joint Position and Torque at Moderate Levels
,”
Sci. Rep.
,
10
(
1
), pp.
1
9
.10.1038/s41598-020-67135-x
9.
Zhang
,
L. Q.
,
Nuber
,
G.
,
Butler
,
J.
,
Bowen
,
M.
, and
Rymer
,
W. Z.
,
1997
, “
In Vivo Human Knee Joint Dynamic Properties as Functions of Muscle Contraction and Joint Position
,”
J. Biomech.
,
31
(
1
), pp.
71
76
.10.1016/S0021-9290(97)00106-1
10.
Lee
,
H.
,
Ho
,
P.
,
Rastgaar
,
M. A.
,
Krebs
,
H. I.
, and
Hogan
,
N.
,
2011
, “
Multivariable Static Ankle Mechanical Impedance With Relaxed Muscles
,”
J. Biomech.
,
44
(
10
), pp.
1901
1908
.10.1016/j.jbiomech.2011.04.028
11.
Bennett
,
D. J.
,
Hollerbach
,
J. M.
,
Xu
,
Y.
, and
Hunter
,
I. W.
,
1992
, “
Time-Varying Stiffness of Human Elbow Joint During Cyclic Voluntary Movement
,”
Exp. Brain Res.
,
88
(
2
), pp.
433
442
.10.1007/BF02259118
12.
Popescu
,
F.
,
Hidler
,
J. M.
, and
Rymer
,
W. Z.
,
2003
, “
Elbow Impedance During Goal-Directed Movements
,”
Exp. Brain Res.
,
152
(
1
), pp.
17
28
.10.1007/s00221-003-1507-4
13.
Ludvig
,
D.
,
Plocharski
,
M.
,
Plocharski
,
P.
, and
Perreault
,
E. J.
,
2017
, “
Mechanisms Contributing to Reduced Knee Stiffness During Movement
,”
Exp. Brain Res.
,
235
(
10
), pp.
2959
2970
.10.1007/s00221-017-5032-2
14.
Pfeifer
,
S.
,
Vallery
,
H.
,
Hardegger
,
M.
,
Riener
,
R.
, and
Perreault
,
E. J.
,
2012
, “
Model-Based Estimation of Knee Stiffness
,”
IEEE Trans. Biomed. Eng.
,
59
(
9
), pp.
2604
2612
.10.1109/TBME.2012.2207895
15.
Pfeifer
,
S.
,
Riener
,
R.
, and
Vallery
,
H.
,
2014
, “
Knee Stiffness Estimation in Physiological Gait
,”
36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC,
Aug. 26–30, Chicago, IL, pp.
1607
1610
.10.1109/EMBC.2014.6943912
16.
Sartori
,
M.
,
Maculan
,
M.
,
Pizzolato
,
C.
,
Reggiani
,
M.
, and
Farina
,
D.
,
2015
, “
Modeling and Simulating the Neuromuscular Mechanisms Regulating Ankle and Knee Joint Stiffness During Human Locomotion
,”
J. Neurophysiol.
,
114
(
4
), pp.
2509
2527
.10.1152/jn.00989.2014
17.
Shamaei
,
K.
,
Sawicki
,
G. S.
, and
Dollar
,
A. M.
,
2013
, “
Estimation of Quasi-Stiffness of the Human Knee in the Stance Phase of Walking
,”
PLoS One
,
8
(
3
), p.
e59993
.10.1371/journal.pone.0059993
18.
Rouse
,
E. J.
,
Gregg
,
R. D.
,
Hargrove
,
L. J.
, and
Sensinger
,
J. W.
,
2013
, “
The Difference Between Stiffness and Quasi-Stiffness in the Context of Biomechanical Modeling
,”
IEEE Trans. Biomed. Eng.
,
60
(
2
), pp.
562
568
.10.1109/TBME.2012.2230261
19.
Temel
,
M.
,
Rudolph
,
K. S.
, and
Agrawal
,
S. K.
,
2011
, “
Gait Recovery in Healthy Subjects: Perturbations to the Knee Motion With a Smart Knee Brace
,”
Adv. Rob.
,
25
(
15
), pp.
1857
1877
.10.1163/016918611X588862
20.
Sulzer
,
J. S.
,
Roiz
,
R. A.
,
Peshkin
,
M. A.
, and
Patton
,
J. L.
,
2009
, “
A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
539
548
.10.1109/TRO.2009.2019788
21.
Andersen
,
J. B.
, and
Sinkjaer
,
T.
,
2003
, “
Mobile Ankle and Knee Perturbator
,”
IEEE Trans. Biomed. Eng.
,
50
(
10
), pp.
1208
1211
.10.1109/TBME.2003.816073
22.
Tucker
,
M. R.
,
Shirota
,
C.
,
Lambercy
,
O.
,
Sulzer
,
J. S.
, and
Gassert
,
R.
,
2017
, “
Design and Characterization of an Exoskeleton for Perturbing the Knee During Gait
,”
IEEE Trans. Biomed. Eng.
,
64
(
10
), pp.
2331
2343
.10.1109/TBME.2017.2656130
23.
Lee
,
H.
, and
Hogan
,
N.
,
2015
, “
Time-Varying Ankle Mechanical Impedance During Human Locomotion
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
5
), pp.
755
764
.10.1109/TNSRE.2014.2346927
24.
Shorter
,
A. L.
, and
Rouse
,
E. J.
,
2018
, “
Mechanical Impedance of the Ankle During the Terminal Stance Phase of Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
1
), pp.
135
143
.10.1109/TNSRE.2017.2758325
25.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2017
, “
Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance
,”
IEEE/ASME Trans. Mechatronics
,
22
(
4
), pp.
1695
1704
.10.1109/TMECH.2017.2704521
26.
Challis
,
J. H.
,
Winter
,
S. L.
, and
Kuperavage
,
A. J.
,
2012
, “
Comparison of Male and Female Lower Limb Segment Inertial Properties
,”
J. Biomech.
,
45
(
15
), pp.
2690
2692
.10.1016/j.jbiomech.2012.07.019
27.
Pachi
,
A.
, and
Ji
,
T.
,
2005
, “
Frequency and Velocity of People Walking
,”
Struct. Eng.,
84
(
3
), pp.
36
40
.https://www.researchgate.net/publication/291793625_Frequency_and_velocity_of_people_walking#:~:text=It%20is%20found%20that%20(a,with%20average%20values%20of%200.7
28.
Lee
,
H.
,
Rouse
,
E. J.
, and
Krebs
,
H. I.
,
2016
, “
Summary of Human Ankle Mechanical Impedance During Walking
,”
IEEE J. Transl. Eng. Health Med.
,
4
, pp.
1
7
.10.1109/JTEHM.2016.2601613
29.
Fulk
,
G.
,
Ludwig
,
M.
,
Dunning
,
K.
,
Golden
,
S.
,
Boyne
,
P.
, and
West
,
T.
,
2011
, “
Estimating Clinically Important Change in Gait Speed in People With Stroke Undergoing Outpatient Rehabilitation
,”
J. Neurol. Phys. Ther. JNPT
,
35
(
2
), pp.
82
89
.10.1097/NPT.0b013e318218e2f2
30.
Akosile
,
C. O.
,
Adegoke
,
B. O. A.
,
Raji
,
N. O.
,
Anyanwu
,
C. C.
, and
Orji
,
G. C.
,
2013
, “
Gait Quality and Physical Functioning of Stroke Survivors With and Without Aphasia
,”
Hong Kong Physiother. J.
,
31
(
1
), pp.
25
29
.10.1016/j.hkpj.2012.11.001
31.
Rouse
,
E. J.
,
Hargrove
,
L. J.
,
Perreault
,
E. J.
,
Peshkin
,
M. A.
, and
Kuiken
,
T. A.
,
2013
, “
Development of a Mechatronic Platform and Validation of Methods for Estimating Ankle Stiffness During the Stance Phase of Walking
,”
ASME J. Biomech. Eng.
,
135
(
8
), pp.
1
8
.10.1115/1.4024286
32.
Scheid
,
F.
,
1988
,
Schaum's Outline of Theory and Problems of Numerical Analysis
,
McGraw-Hill
, New York.
33.
Acosta
,
A. M.
,
Kirsch
,
R. F.
, and
Perreault
,
E. J.
,
2000
, “
A Robotic Manipulator for the Characterization of Two-Dimensional Dynamic Stiffness Using Stochastic Displacement Perturbations
,”
J. Neurosci. Methods
,
102
(
2
), pp.
177
186
.10.1016/S0165-0270(00)00307-1
34.
Azocar
,
A. F.
, and
Rouse
,
E. J.
,
2017
, “
Stiffness Perception During Active Ankle and Knee Movement
,”
IEEE Trans. Biomed. Eng.
,
64
(
12
), pp.
2949
2956
.10.1109/TBME.2017.2691308
35.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2017
, “
The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
12
), pp.
2375
2386
.10.1109/TNSRE.2017.2750113
36.
Glanzer
,
E. M.
, and
Adamczyk
,
P. G.
,
2018
, “
Design and Validation of a Semi-Active Variable Stiffness Foot Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
12
), pp.
2351
2359
.10.1109/TNSRE.2018.2877962
You do not currently have access to this content.