Abstract

Characterization of material parameters from experimental data remains challenging, especially on biological structures. One of such techniques allowing for the inverse determination of material parameters from measurement data is the virtual fields method (VFM). However, application of the VFM on general structures of complicated shape has not yet been extensively investigated. In this paper, we extend the framework of the VFM method to thin curved solids in three-dimensional, commonly denoted shells. Our method is then used to estimate the Young's modulus and hysteretic damping of the human eardrum. By utilizing Kirchhoff plate theory, we assume that the behavior of the shell varies linearly through the thickness. The total strain of the shell can then be separated in a bending and membrane strain. This in turn allowed for an application of the VFM based only on data of the outer surface of the shell. We validated our method on simulated and experimental data of a human eardrum made to vibrate at certain frequencies. It was shown that the identified material properties were accurately determined based only on data from the outer surface and are in agreement with literature. Additionally, we observed that neither the bending nor the membrane strain in an human eardrum can be neglected and both contribute significantly to the total strain found experimentally.

References

1.
Gan
,
R. Z.
,
Feng
,
B.
, and
Sun
,
Q.
,
2004
, “
Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission
,”
Ann. Biomed. Eng.
,
32
(
6
), pp.
847
859
.10.1023/B:ABME.0000030260.22737.53
2.
Ferrazzini
,
M.
,
2003
, “
Virtual Middle Ear: A Dynamic Mathematical Model Based on the Finite Element Method
,” Ph.D. thesis,
ETH Zurich
, Zürich, Switzerland.
3.
Tuck-Lee
,
J. P.
,
Pinsky
,
P. M.
,
Steele
,
C. R.
, and
Puria
,
S.
,
2008
, “
Finite Element Modeling of Acousto-Mechanical Coupling in the Cat Middle Ear
,”
J. Acoust. Soc. Am.
,
124
(
1
), pp.
348
362
.10.1121/1.2912438
4.
Zhao
,
F.
,
Koike
,
T.
,
Wang
,
J.
,
Sienz
,
H.
, and
Meredith
,
R.
,
2009
, “
Finite Element Analysis of the Middle Ear Transfer Functions and Related Pathologies
,”
Med. Eng. Phys.
,
31
(
8
), pp.
907
916
.10.1016/j.medengphy.2009.06.009
5.
Aernouts
,
J.
,
Soons
,
J. A.
, and
Dirckx
,
J. J.
,
2010
, “
Quantification of Tympanic Membrane Elasticity Parameters From in Situ Point Indentation Measurements: Validation and Preliminary Study
,”
Hear. Res.
,
263
(
1
), pp.
177
182
.10.1016/j.heares.2009.09.007
6.
Volandri
,
G.
,
Di Puccio
,
F.
,
Forte
,
P.
, and
Carmignani
,
C.
,
2011
, “
Biomechanics of the Tympanic Membrane
,”
J. Biomech.
,
44
(
7
), pp.
1219
1236
.10.1016/j.jbiomech.2010.12.023
7.
Livens
,
P.
,
Muyshondt
,
P. G.
, and
Dirckx
,
J. J.
,
2019
, “
Sound Localization in the Lizard Using Internally Coupled Ears: A Finite-Element Approach
,”
Hear. Res.
,
378
, pp.
23
32
.10.1016/j.heares.2019.01.016
8.
Muyshondt
,
P. G. G.
, and
Dirckx
,
J. J. J.
,
2019
, “
How Flexibility and Eardrum Cone Shape Affect Sound Conduction in Single-Ossicle Ears: A Dynamic Model Study of the Chicken Middle Ear
,”
Biomech. Model. Mechanobiol.
, 19, pp. 233–249.10.1007/s10237-019-01207-4
9.
Shimada
,
T.
, and
Lim
,
D. J.
,
1971
, “
The Fiber Arrangement of the Human Tympanic Membrane: A Scanning Electron Microscopic Observation
,”
Ann. Otol. Rhinol. Laryngol.
,
80
(
2
), pp.
210
217
.10.1177/000348947108000207
10.
Jahnke
,
K.
,
2004
,
Middle Ear Surgery
,
George Thieme Verlag
, Stuttgart, Germany.
11.
De Greef
,
D.
,
Pires
,
F.
, and
Dirckx
,
J. J.
,
2017
, “
Effects of Model Definitions and Parameter Values in Finite Element Modeling of Human Middle Ear Mechanics
,”
Hear. Res.
,
344
, pp.
195
206
.10.1016/j.heares.2016.11.011
12.
Cheng
,
T.
,
Dai
,
C.
, and
Gan
,
R. Z.
,
2007
, “
Viscoelastic Properties of Human Tympanic Membrane
,”
Ann. Biomed. Eng.
,
35
(
2
), pp.
305
314
.10.1007/s10439-006-9227-0
13.
Luo
,
H.
,
Dai
,
C.
,
Gan
,
R. Z.
, and
Lu
,
H.
,
2009
, “
Measurement of Young's Modulus of Human Tympanic Membrane at High Strain Rates
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
064501
.10.1115/1.3118770
14.
Daphalapurkar
,
N. P.
,
Dai
,
C.
,
Gan
,
R. Z.
, and
Lu
,
H.
,
2009
, “
Characterization of the Linearly Viscoelastic Behavior of Human Tympanic Membrane by Nanoindentation
,”
J. Mech. Behav. Biomed. Mater.
,
2
(
1
), pp.
82
92
.10.1016/j.jmbbm.2008.05.008
15.
Aernouts
,
J.
,
Aerts
,
J. R.
, and
Dirckx
,
J. J.
,
2012
, “
Mechanical Properties of Human Tympanic Membrane in the Quasi-Static Regime From in Situ Point Indentation Measurements
,”
Hear. Res.
,
290
(
1–2
), pp.
45
54
.10.1016/j.heares.2012.05.001
16.
Liang
,
J.
,
Luo
,
H.
,
Yokell
,
Z.
,
Nakmali
,
D. U.
,
Gan
,
R. Z.
, and
Lu
,
H.
,
2016
, “
Characterization of the Nonlinear Elastic Behavior of Chinchilla Tympanic Membrane Using Micro-Fringe Projection
,”
Hear. Res.
,
339
, pp.
1
11
.10.1016/j.heares.2016.05.012
17.
Avril
,
S.
,
Badel
,
P.
, and
Duprey
,
A.
,
2010
, “
Anisotropic and Hyperelastic Identification of In Vitro Human Arteries From Full-Field Optical Measurements
,”
J. Biomech.
,
43
(
15
), pp.
2978
2985
.10.1016/j.jbiomech.2010.07.004
18.
Grédiac
,
M.
,
Fournier
,
N.
,
Paris
,
P.-A.
, and
Surrel
,
Y.
,
1998
, “
Direct Identification of Elastic Constants of Anisotropic Plates by Modal Analysis: Experimental Results
,”
J. Sound Vib.
,
210
(
5
), pp.
643
659
.10.1006/jsvi.1997.1304
19.
Pires
,
F.
,
Avril
,
S.
,
Vanlanduit
,
S.
, and
Dirckx
,
J.
,
2019
, “
Structural Intensity Assessment on Shells Via a Finite Element Approximation
,”
J. Acoust. Soc. Am.
,
145
(
1
), pp.
312
326
.10.1121/1.5087564
20.
Bischoff
,
M.
,
Wall
,
W. A.
,
Bletzinger
,
K. U.
, and
Ramm
,
E.
,
2004
, “
Models and Finite Elements for Thin-Walled Structures.
Encyclopedia of Computational Mechanics
,
E.
Stein
,
R.
Borst
, and
T.
Hughes
, eds., John Wiley & Sons, Hoboken, NJ, pp.
59
134
.
21.
De Greef
,
D.
,
Aernouts
,
J.
,
Aerts
,
J.
,
Cheng
,
J. T.
,
Horwitz
,
R.
,
Rosowski
,
J. J.
, and
Dirckx
,
J. J.
,
2014
, “
Viscoelastic Properties of the Human Tympanic Membrane Studied With Stroboscopic Holography and Finite Element Modeling
,”
Hear. Res.
,
312
, pp.
69
80
.10.1016/j.heares.2014.03.002
22.
Pierron
,
F.
, and
Grédiac
,
M.
,
2012
,
The Virtual Fields Method: Extracting Constitutive Mechanical Parameters From Full-Field Deformation Measurements
,
Springer Science & Business Media
, New York.
23.
Feng
,
Z.
, and
Rowlands
,
R.
,
1991
, “
Smoothing Finite-Element and Experimental Hybrid Technique for Stress Analyzing Composites
,”
Comput. Struct.
,
39
(
6
), pp.
631
639
.10.1016/0045-7949(91)90205-Z
24.
Avril
,
S.
, and
Pierron
,
F.
,
2007
, “
General Framework for the Identification of Constitutive Parameters From Full-Field Measurements in Linear Elasticity
,”
Int. J. Solids Struct.
,
44
(
14–15
), pp.
4978
5002
.10.1016/j.ijsolstr.2006.12.018
25.
Avril
,
S.
,
Feissel
,
P.
,
Pierron
,
F.
, and
Villon
,
P.
,
2009
, “
Comparison of Two Approaches for Differentiating Full-Field Data in Solid Mechanics
,”
Meas. Sci. Technol.
,
21
(
1
), p.
015703
.10.1088/0957-0233/21/1/015703
26.
Avril
,
S.
,
Grédiac
,
M.
, and
Pierron
,
F.
, “
Sensitivity of the Virtual Fields Method to Noisy Data
,”
Comput. Mech.
,
34
(
6
), pp.
439
452
.10.1007/s00466-004-0589-6
27.
Marek
,
A.
,
Davis
,
F. M.
, and
Pierron
,
F.
, “
Sensitivity-Based Virtual Fields for the Non-Linear Virtual Fields Method
,”
Comput. Mech.
,
60
(
3
), pp.
409
431
.10.1007/s00466-017-1411-6
28.
Kim
,
J.-H.
,
Avril
,
S.
,
Duprey
,
A.
, and
Favre
,
J.-P.
, “
Experimental Characterization of Rupture in Human Aortic Aneurysms Using a Full-Field Measurement Technique
,”
Biomech. Model. Mechanobiol.
,
11
(
6
), pp.
841
853
.10.1007/s10237-011-0356-5
29.
Lévy
,
B.
,
Petitjean
,
S.
,
Ray
,
N.
, and
Maillot
,
J.
,
2002
, “
Least Squares Conformal Maps for Automatic Texture Atlas Generation
,”
ACM Trans. Graph.
,
21
, pp.
362
371
.10.1145/566654.566590
30.
Schreier
,
H.
,
Orteu
,
J.-J.
, and
Sutton
,
M. A.
,
2009
,
Image Correlation for Shape, Motion and Deformation Measurements
,
Springer US
, New York.
31.
Gladiné
,
K.
, and
Dirckx
,
J. J.
,
2019
, “
Strain Distribution in Rabbit Eardrums Under Static Pressure
,”
Hear. Res.
,
381
, p.
107772
.10.1016/j.heares.2019.107772
32.
Cheng
,
J. T.
,
Aarnisalo
,
A. A.
,
Harrington
,
E. D.
,
Socorro Hernandez-Montes
,
M.
,
Furlong
,
C.
,
Merchant
,
S. N.
, and
Rosowski
,
J. J.
,
2010
, “
Motion of the Surface of the Human Tympanic Membrane Measured With Stroboscopic Holography
,”
Hear. Res.
,
263
(
1–2
), pp.
66
77
.10.1016/j.heares.2009.12.024
33.
De Greef
,
D.
,
Soons
,
J.
, and
Dirckx
,
J. J.
,
2014
, “
Digital Stroboscopic Holography Setup for Deformation Measurement at Both Quasi-Static and Acoustic Frequencies
,”
Int. J. Optomechatron.
,
8
(
4
), pp.
275
291
.10.1080/15599612.2014.942928
34.
Van der Jeught
,
S.
,
Dirckx
,
J. J.
,
Aerts
,
J. R.
,
Bradu
,
A.
,
Podoleanu
,
A. G.
, and
Buytaert
,
J. A.
,
2013
, “
Full-Field Thickness Distribution of Human Tympanic Membrane Obtained With Optical Coherence Tomography
,”
J. Assoc. Res. Otolaryngol.
,
14
(
4
), pp.
483
494
.10.1007/s10162-013-0394-z
35.
Wang
,
P.
,
Pierron
,
F.
,
Rossi
,
M.
,
Lava
,
P.
, and
Thomsen
,
O.
,
2016
, “
Optimised Experimental Characterisation of Polymeric Foam Material Using Dic and the Virtual Fields Method
,”
Strain
,
52
(
1
), pp.
59
79
.10.1111/str.12170
36.
Livens
,
P.
,
Gladiné
,
K.
, and
Dirckx
,
J. J.
,
2020
, “
Eardrum Displacement and Strain in the Tokay Gecko (Gekko Gecko) Under Quasi-Static Pressure Loads
,”
Hear. Res.
,
387
, p.
107877
.10.1016/j.heares.2019.107877
37.
Voss
,
S. E.
,
Rosowski
,
J. J.
,
Merchant
,
S. N.
, and
Peake
,
W. T.
,
2000
, “
Acoustic Responses of the Human Middle Ear
,”
Hear. Res.
,
150
(
1–2
), pp.
43
69
.10.1016/S0378-5955(00)00177-5
38.
Berry
,
A.
, and
Robin
,
O.
,
2016
, “
Identification of Spatially Correlated Excitations on a Bending Plate Using the Virtual Fields Method
,”
J. Sound Vib.
,
375
, pp.
76
91
.10.1016/j.jsv.2016.03.042
39.
Devivier
,
C.
,
Pierron
,
F.
, and
Wisnom
,
M.
,
2013
, “
Impact Damage Detection in Composite Plates Using Deflectometry and the Virtual Fields Method
,”
Compos. Part A: Appl. Sci. Manuf.
,
48
, pp.
201
218
.10.1016/j.compositesa.2013.01.011
40.
Khaleghi
,
M.
,
Cheng
,
J. T.
,
Furlong
,
C.
, and
Rosowski
,
J. J.
,
2016
, “
In-Plane and Out-of-Plane Motions of the Human Tympanic Membrane
,”
J. Acoust. Soc. Am.
,
139
(
1
), pp.
104
117
.10.1121/1.4935386
41.
Grédiac
,
M.
, and
Pierron
,
F.
,
2004
, “
Numerical Issues in the Virtual Fields Method
,”
Int. J. Numer. Methods Eng.
,
59
(
10
), pp.
1287
1312
.10.1002/nme.914
You do not currently have access to this content.