Abstract

Pulmonary hypertension (PH) is a progressive disease that is characterized by a gradual increase in both resistive and reactive pulmonary arterial (PA) impedance. Previous studies in a rodent model of PH have shown that reducing the hemodynamic load in the left lung (by banding the left PA) reverses this remodeling phenomenon. However, banding a single side of the pulmonary circulation is not a viable clinical option, so-using in silico modeling–we evaluated if the banding effect can be recreated by replacing the proximal vasculature with a compliant synthetic PA. We developed a computational model of the pulmonary circulation by combining a one-dimensional model of the proximal vasculature with a zero-dimensional line transmission model to the 12th generation. Using this model, we performed four simulations: (1) Control; (2) PH; (3) PH with a stenosis in the left PA; and (4) PH with proximal vessel compliance returned to Control levels. Simulations revealed that vascular changes associated with PH result in an increase in pulse pressure (PP), maximum pressure (Pmax), maximum wall shear stress (WSS), and maximum circumferential stress (σθθ)relative to controls, in the distal circulation. Banding the left PA reduced these measurements of hemodynamic stress in the left lung, but increases them in the right lung. Furthermore, left PA banding increased reactive PA impedance. However, returning the proximal PA compliance to Control levels simultaneously decreased all measures of hemodynamic stress in both lungs, and returned reactive PA impedance to normal levels. In conclusion, if future in vivo studies support the idea of hemodynamic unloading as an effective therapy for PH, this can be surgically achieved by replacing the proximal PA with a compliant prosthesis, and it will have the added benefit of reducing reactive right ventricular afterload.

References

1.
Oishi
,
P.
, and
Fineman
,
J. R.
,
2016
, “
Pulmonary Hypertension
,”
Pediatr. Crit. Care Med.
,
17
(
8 Suppl 1
), pp.
S140
145
.10.1097/PCC.0000000000000754
2.
Hunter
,
K. S.
,
Lammers
,
S. R.
, and
Shandas
,
R.
,
2011
, “
Pulmonary Vascular Stiffness: Measurement, Modeling, and Implications in Normal and Hypertensive Pulmonary Circulations
,”
Compr. Physiol.
,
1
(
3
), pp.
1413
1435
.10.1002/cphy.c100005
3.
Lammers
,
S.
,
Scott
,
D.
,
Hunter
,
K.
,
Tan
,
W.
,
Shandas
,
R.
, and
Stenmark
,
K. R.
,
2012
, “
Mechanics and Function of the Pulmonary Vasculature: Implications for Pulmonary Vascular Disease and Right Ventricular Function
,”
Compr. Physiol.
,
2
(
1
), pp.
295
319
.10.1002/cphy.c100070
4.
Tan
,
W.
,
Madhavan
,
K.
,
Hunter
,
K. S.
,
Park
,
D.
, and
Stenmark
,
K. R.
,
2014
, “
Vascular Stiffening in Pulmonary Hypertension: Cause or Consequence? (2013 Grover Conference Series)
,”
Pulm. Circ.
,
4
(
4
), pp.
560
580
.10.1086/677370
5.
Stenmark
,
K. R.
,
Davie
,
N.
,
Frid
,
M.
,
Gerasimovskaya
,
E.
, and
Das
,
M.
,
2006
, “
Role of the Adventitia in Pulmonary Vascular Remodeling
,”
Physiology (Bethesda)
,
21
(
2
), pp.
134
145
.10.1152/physiol.00053.2005
6.
Abe
,
K.
,
Shinoda
,
M.
,
Tanaka
,
M.
,
Kuwabara
,
Y.
,
Yoshida
,
K.
,
Hirooka
,
Y.
,
McMurtry
,
I. F.
,
Oka
,
M.
, and
Sunagawa
,
K.
,
2016
, “
Haemodynamic Unloading Reverses Occlusive Vascular Lesions in Severe Pulmonary Hypertension
,”
Cardiovasc. Res.
,
111
(
1
), pp.
16
25
.10.1093/cvr/cvw070
7.
Diem
,
A. K.
, and
Bressloff
,
N. W.
,
2017
, “
VaMpy: A Python Package to Solve 1D Blood Flow Problems
,”
J. Open Res. Software
,
5
(
1
), p. 17.10.5334/jors.159
8.
Olufsen
,
M. S.
,
2000
, “
A One-Dimensional Fluid Dynamic Model of the Systemic Arteries
,”
Stud. Health Technol. Inform.
,
71
, pp.
79
97
.10.1007/978-1-4613-0151-6_9
9.
Qureshi
,
M. U.
,
Colebank
,
M. J.
,
Paun
,
L. M.
,
Ellwein Fix
,
L.
,
Chesler
,
N.
,
Haider
,
M. A.
,
Hill
,
N. A.
,
Husmeier
,
D.
, and
Olufsen
,
M. S.
,
2019
, “
Hemodynamic Assessment of Pulmonary Hypertension in Mice: A Model-Based Analysis of the Disease Mechanism
,”
Biomech. Model Mechanobiol.
,
18
(
1
), pp.
219
243
.10.1007/s10237-018-1078-8
10.
Olufsen
,
M. S.
,
Peskin
,
C. S.
,
Kim
,
W. Y.
,
Pedersen
,
E. M.
,
Nadim
,
A.
, and
Larsen
,
J.
,
2000
, “
Numerical Simulation and Experimental Validation of Blood Flow in Arteries With Structured-Tree Outflow Conditions
,”
Ann. Biomed. Eng.
,
28
(
11
), pp.
1281
1299
.10.1114/1.1326031
11.
Kheyfets
,
V. O.
,
Rios
,
L.
,
Smith
,
T.
,
Schroeder
,
T.
,
Mueller
,
J.
,
Murali
,
S.
,
Lasorda
,
D.
,
Zikos
,
A.
,
Spotti
,
J.
,
Reilly
,
J. J.
, Jr.
, and
Finol
,
E. A.
,
2015
, “
Patient-Specific Computational Modeling of Blood Flow in the Pulmonary Arterial Circulation
,”
Comput. Methods Programs Biomed.
,
120
(
2
), pp.
88
101
.10.1016/j.cmpb.2015.04.005
12.
Rol
,
N.
,
Timmer
,
E. M.
,
Faes
,
T. J.
,
Vonk Noordegraaf
,
A.
,
Grünberg
,
K.
,
Bogaard
,
H. J.
, and
Westerhof
,
N.
,
2017
, “
Vascular Narrowing in Pulmonary Arterial Hypertension is Heterogeneous: Rethinking Resistance
,”
Physiol. Rep.
,
5
(
6
), p.
e13159
.10.14814/phy2.13159
13.
Mishra
,
A.
,
O'Farrell
,
F. M.
,
Reynell
,
C.
,
Hamilton
,
N. B.
,
Hall
,
C. N.
, and
Attwell
,
D.
,
2014
, “
Imaging Pericytes and Capillary Diameter in Brain Slices and Isolated Retinae
,”
Nat. Protoc.
,
9
(
2
), pp.
323
336
.10.1038/nprot.2014.019
14.
Wiedeman
,
M. P.
,
1963
, “
Dimensions of Blood Vessels From Distributing Artery to Collecting Vein
,”
Circ. Res.
,
12
(
4
), pp.
375
378
.10.1161/01.RES.12.4.375
15.
Townsley
,
M. I.
,
2012
, “
Structure and Composition of Pulmonary Arteries, Capillaries, and Veins
,”
Compr. Physiol.
,
2
(
1
), pp.
675
709
.10.1002/cphy.c100081
16.
Humphrey
,
J. D.
, and
O'Rourke
,
S. L.
,
2015
,
An Introduction to Biomechanics: Solids and Fluids, Analysis and Design
,
Springer
,
New York
.
17.
Tabuchi
,
A.
,
Mertens
,
M.
,
Kuppe
,
H.
,
Pries
,
A. R.
, and
Kuebler
,
W. M.
,
2008
, “
Intravital Microscopy of the Murine Pulmonary Microcirculation
,”
J. Appl. Physiol. (1985)
,
104
(
2
), pp.
338
346
.10.1152/japplphysiol.00348.2007
18.
Bauer
,
E. M.
,
Zheng
,
H.
,
Comhair
,
S.
,
Erzurum
,
S.
,
Billiar
,
T. R.
, and
Bauer
,
P. M.
,
2011
, “
Complement C3 Deficiency Attenuates Chronic Hypoxia-Induced Pulmonary Hypertension in Mice
,”
PLoS One
,
6
(
12
), p.
e28578
10.1371/journal.pone.0028578
19.
Hunter
,
K. S.
,
Lee
,
P. F.
,
Lanning
,
C. J.
,
Ivy
,
D. D.
,
Kirby
,
K. S.
,
Claussen
,
L. R.
,
Chan
,
K. C.
, and
Shandas
,
R.
,
2008
, “
Pulmonary Vascular Input Impedance is a Combined Measure of Pulmonary Vascular Resistance and Stiffness and Predicts Clinical Outcomes Better Than Pulmonary Vascular Resistance Alone in Pediatric Patients With Pulmonary Hypertension
,”
Am. Heart J.
,
155
(
1
), pp.
166
174
.10.1016/j.ahj.2007.08.014
20.
Abe
,
K.
,
Toba
,
M.
,
Alzoubi
,
A.
,
Ito
,
M.
,
Fagan
,
K. A.
,
Cool
,
C. D.
,
Voelkel
,
N. F.
,
McMurtry
,
I. F.
, and
Oka
,
M.
,
2010
, “
Formation of Plexiform Lesions in Experimental Severe Pulmonary Arterial Hypertension
,”
Circulation
,
121
(
25
), pp.
2747
2754
.10.1161/CIRCULATIONAHA.109.927681
21.
Wang
,
Z.
, and
Chesler
,
N. C.
,
2011
, “
Pulmonary Vascular Wall Stiffness: An Important Contributor to the Increased Right Ventricular Afterload With Pulmonary Hypertension
,”
Pulm. Circ.
,
1
(
2
), pp.
212
223
.10.4103/2045-8932.83453
22.
Sun
,
W.
, and
Chan
,
S. Y.
,
2018
, “
Pulmonary Arterial Stiffness: An Early and Pervasive Driver of Pulmonary Arterial Hypertension
,”
Front. Med. (Lausanne)
,
5
, p.
204
.10.3389/fmed.2018.00204
23.
Rabinovitch
,
M.
,
2012
, “
Molecular Pathogenesis of Pulmonary Arterial Hypertension
,”
J. Clin. Invest.
,
122
(
12
), pp.
4306
4313
.10.1172/JCI60658
24.
Stenmark
,
K. R.
,
Nozik-Grayck
,
E.
,
Gerasimovskaya
,
E.
,
Anwar
,
A.
,
Li
,
M.
,
Riddle
,
S.
, and
Frid
,
M.
,
2011
, “
The Adventitia: Essential Role in Pulmonary Vascular Remodeling
,”
Compr. Physiol.
,
1
(
1
), pp.
141
161
.10.1002/cphy.c090017
25.
Dolan
,
J. M.
,
Kolega
,
J.
, and
Meng
,
H.
,
2013
, “
High Wall Shear Stress and Spatial Gradients in Vascular Pathology: A Review
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1411
1427
.10.1007/s10439-012-0695-0
26.
Ando
,
J.
, and
Yamamoto
,
K.
,
2011
, “
Effects of Shear Stress and Stretch on Endothelial Function
,”
Antioxid. Redox Signal
,
15
(
5
), pp.
1389
1403
.10.1089/ars.2010.3361
27.
Vitali
,
S. H.
,
Hansmann
,
G.
,
Rose
,
C.
,
Fernandez-Gonzalez
,
A.
,
Scheid
,
A.
,
Mitsialis
,
S. A.
, and
Kourembanas
,
S.
,
2014
, “
The Sugen 5416/Hypoxia Mouse Model of Pulmonary Hypertension Revisited: Long-Term Follow-Up
,”
Pulm. Circ.
,
4
(
4
), pp.
619
629
.10.1086/678508
28.
Stenmark
,
K. R.
,
Frid
,
M. G.
,
Yeager
,
M.
,
Li
,
M.
,
Riddle
,
S.
,
McKinsey
,
T.
, and
El Kasmi
,
K. C.
,
2012
, “
Targeting the Adventitial Microenvironment in Pulmonary Hypertension: A Potential Approach to Therapy That Considers Epigenetic Change
,”
Pulm. Circ.
,
2
(
1
), pp.
3
14
.10.4103/2045-8932.94817
29.
Humphrey
,
J. D.
,
2008
, “
Mechanisms of Arterial Remodeling in Hypertension: Coupled Roles of Wall Shear and Intramural Stress
,”
Hypertension
,
52
(
2
), pp.
195
200
.10.1161/HYPERTENSIONAHA.107.103440
30.
Gerges
,
C.
,
Vollmers
,
K.
,
Pritzker
,
M. R.
,
Gainor
,
J.
,
Scandurra
,
J.
,
Weir
,
E. K.
, and
Lang
,
I. M.
,
2020
, “
Pulmonary Artery Endovascular Device Compensates for Loss of Vascular Compliance in Pulmonary Arterial Hypertension
,”
J. Am. Coll. Cardiol.
,
76
(
19
), pp.
2284
2286
.10.1016/j.jacc.2020.08.080
You do not currently have access to this content.