Abstract

We have performed three-dimensional high-resolution numerical simulations of a bi-leaflet mechanical heart valve implanted at different orientations in an anatomic left ventricle-aorta obtained from magnetic resonance imaging of a volunteer. The thoroughly validated overset curvilinear-immersed boundary fluid–structure interaction flow solver is used in which the aorta and left ventricle (LV) are discretized with boundary-conforming and nonconforming curvilinear grids, respectively. The motion of the left ventricle wall is prescribed based on a lumped parameter model while the motion of the leaflets is calculated using a strongly coupled fluid–structure interaction algorithm enhanced with Aitken convergence technique. We carried out simulations for three valve orientations, which differ from each other by 45 deg, and compared the leaflet motion and flow field for multiple cycles. Our results show reproducible and relatively symmetrical opening for all valve orientations. The presence of small-scale vortical structures after peak systole causes significant cycle-to-cycle variations in valve kinematics during the closing phase for all valve orientations. Furthermore, our results show that valve orientation does not have a significant effect on the distribution of viscous shear stress in the ascending aorta. Additionally, two different mathematical activation models including linear level of activation and Soares model are used to quantify the platelet activation in the ascending aorta. The results show that the valve orientation does not significantly affect (less than 8%) the total platelet activation in the ascending aorta.

References

1.
Virani
,
S. S.
,
Alonso
,
A.
,
Aparicio
,
H. J.
,
Benjamin
,
E. J.
,
Bittencourt
,
M. S.
,
Callaway
,
C. W.
,
Carson
,
A. P.
,
et al.
,
On behalf of the American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee,
2021
, “
Heart Disease and Stroke Statistics–2021 Update: A Report From the American Heart Association
,”
Circulation
,
143
(
8
), pp.
e254
e743
.10.1161/CIR.0000000000000950
2.
Head
,
S. J.
,
Çelik
,
M.
, and
Kappetein
,
A. P.
,
2017
, “
Mechanical Versus Bioprosthetic Aortic Valve Replacement
,”
Eur. Heart J.
,
38
(
28
), pp.
2183
2191
04.10.1093/eurheartj/ehx141
3.
Diaz
,
R.
,
Hernandez-Vaquero
,
D.
,
Alvarez-Cabo
,
R.
,
Avanzas
,
P.
,
Silva
,
J.
,
Moris
,
C.
, and
Pascual
,
I.
,
2019
, “
Long-Term Outcomes of Mechanical Versus Biological Aortic Valve Prosthesis: Systematic Review and Meta-Analysis
,”
J. Thorac. Cardiovasc. Surg.
,
158
(
3
), pp.
706
714
.10.1016/j.jtcvs.2018.10.146
4.
Sheriff
,
J.
,
Bluestein
,
D.
,
Girdhar
,
G.
, and
Jesty
,
J.
,
2010
, “
High-Shear Stress Sensitizes Platelets to Subsequent Low-Shear Conditions
,”
Ann. Biomed. Eng.
,
38
(
4
), pp.
1442
1450
.10.1007/s10439-010-9936-2
5.
Kheradvar
,
A.
,
Groves
,
E. M.
,
Falahatpisheh
,
A.
,
Mofrad
,
M. K.
,
Alavi
,
S. H.
,
Tranquillo
,
R.
,
Dasi
,
L. P.
,
et al.
,
2015
, “
Emerging Trends in Heart Valve Engineering: Part IV. Computational Modeling and Experimental Studies
,”
Ann. Biomed. Eng.
,
43
(
10
), pp.
2314
2333
.10.1007/s10439-015-1394-4
6.
Borazjani
,
I.
,
2015
, “
A Review of Fluid-Structure Interaction Simulations of Prosthetic Heart Valves
,”
J. Long-Term Effects Med. Implants
,
25
(
1–2
), pp.
75
93
.10.1615/JLongTermEffMedImplants.2015011791
7.
Hedayat
,
M.
,
Asgharzadeh
,
H.
, and
Borazjani
,
I.
,
2017
, “
Platelet Activation of Mechanical Versus Bioprosthetic Heart Valves During Systole
,”
J. Biomech.
,
56
, pp.
111
116
.10.1016/j.jbiomech.2017.03.002
8.
Hedayat
,
M.
, and
Borazjani
,
I.
,
2019
, “
Comparison of Platelet Activation Through Hinge versus Bulk Flow in Bileaflet Mechanical Heart Valves
,”
J. Biomech.
,
83
, pp.
280
290
.10.1016/j.jbiomech.2018.12.003
9.
Li
,
Q.
,
Hegner
,
F.
, and
Bruecker
,
C. H.
,
2020
, “
Comparative Study of Wall-Shear Stress at the Ascending Aorta for Different Mechanical Heart Valve Prostheses
,”
ASME J. Biomech. Eng.
,
142
(
1
), p. 011006.10.1115/1.4043357
10.
Travis
,
B. R.
,
Leo
,
H. L.
,
Shah
,
P. A.
,
Frakes
,
D. H.
, and
Yoganathan
,
A. P.
,
2002
, “
An Analysis of Turbulent Shear Stresses in Leakage Flow Through a Bileaflet Mechanical Prostheses
,”
ASME J. Biomech. Eng.
,
124
(
2
), pp.
155
165
.10.1115/1.1448519
11.
Mächler
,
H.
,
Perthel
,
M.
,
Reiter
,
G.
,
Reiter
,
U.
,
Zink
,
M.
,
Bergmann
,
P.
,
Waltensdorfer
,
A.
, and
Laas
,
J.
,
2004
, “
Influence of Bileaflet prosthetic Mitral Valve Orientation on Left Ventricular Flow–An Experimental In Vivo Magnetic Resonance Imaging study
,”
Eur. J. Cardio-Thorac. Surg.
,
26
(
4
), pp.
747
753
.10.1016/j.ejcts.2004.06.019
12.
Annerel
,
S.
,
Claessens
,
T.
,
Taelman
,
L.
,
Degroote
,
J.
,
Van Nooten
,
G.
,
Verdonck
,
P.
,
Segers
,
P.
, and
Vierendeels
,
J.
,
2015
, “
Influence of Valve Size, Orientation and Downstream Geometry of an Aortic BMHV on Leaflet Motion and Clinically Used Valve Performance Parameters
,”
Ann. Biomed. Eng.
,
43
(
6
), pp.
1370
1384
.10.1007/s10439-014-1102-9
13.
Kleine
,
P.
,
Perthel
,
M.
,
Nygaard
,
H.
,
Hansen
,
S. B.
,
Paulsen
,
P. K.
,
Riis
,
C.
, and
Laas
,
J.
,
1998
, “
Medtronic Hall Versus St. Jude Medical Mechanical Aortic Valve: Downstream Turbulences With Respect to Rotation in Pigs
,”
J. Heart Valve Dis.
,
7
(
5
), pp.
548
555
.https://pubmed.ncbi.nlm.nih.gov/9793855/
14.
Kleine
,
P.
,
Scherer
,
M.
,
Abdel-Rahman
,
U.
,
Klesius
,
A. A.
,
Ackermann
,
H.
, and
Moritz
,
A.
,
2002
, “
Effect of Mechanical Aortic Valve Orientation on Coronary Artery Flow: Comparison of Tilting Disc Versus Bileaflet Prostheses in Pigs
,”
J. Thorac. Cardiovasc. Surg.
,
124
(
5
), pp.
925
932
.10.1067/mtc.2002.126046
15.
Akutsu
,
T.
,
Saito
,
J.
,
Imai
,
R.
,
Suzuki
,
T.
, and
Cao
,
X. D.
,
2008
, “
Dynamic Particle Image Velocimetry Study of the Aortic Flow Field of Contemporary Mechanical Bileaflet Prostheses
,”
J. Artif. Organs
,
11
(
2
), pp.
75
90
.10.1007/s10047-008-0410-y
16.
Akutsu
,
T.
,
Matsumoto
,
A.
, and
Takahashi
,
K.
,
2011
, “
In Vitro Study of the Correlation Between the Aortic Flow Field Affected by the Bileaflet Mechanical Valves and Coronary Circulation
,”
Fifth European Conference of the International Federation for Medical and Biological Engineering
,
Springer
, Budapest, Hungary, Sept. 14–18, pp.
769
772
.10.1007/978-3-642-23508-5_200
17.
Borazjani
,
I.
, and
Sotiropoulos
,
F.
,
2010
, “
The Effect of Implantation Orientation of a Bileaflet Mechanical Heart Valve on Kinematics and Hemodynamics in an Anatomic Aorta
,”
ASME J. Biomech. Eng.
,
132
(
11
), p. 111005.10.1115/1.4002491
18.
Haya
,
L.
, and
Tavoularis
,
S.
,
2016
, “
Effects of Bileaflet Mechanical Heart Valve Orientation on Fluid Stresses and Coronary Flow
,”
J. Fluid Mech.
,
806
, pp.
129
164
.10.1017/jfm.2016.582
19.
Abbas
,
S. S.
,
Nasif
,
M. S.
,
Al-Waked
,
R.
, and
Meor Said
,
M. A.
,
2020
, “
Numerical Investigation on the Effect of Bileaflet Mechanical Heart Valve's Implantation Tilting Angle and Aortic Root Geometry on Intermittent Regurgitation and Platelet Activation
,”
Artif. Organs
,
44
(
2
), pp.
E20
E39
.10.1111/aor.13536
20.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2008
, “
Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction With Complex 3D Rigid Bodies
,”
J. Comput. Phys.
,
227
(
16
), pp.
7587
7620
.10.1016/j.jcp.2008.04.028
21.
Borazjani
,
I.
,
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2010
, “
High-Resolution Fluid–Structure Interaction Simulations of Flow Through a Bi-Leaflet Mechanical Heart Valve in an Anatomic Aorta
,”
Ann. Biomed. Eng.
,
38
(
2
), pp.
326
344
.10.1007/s10439-009-9807-x
22.
Song
,
Z.
, and
Borazjani
,
I.
,
2015
, “
The Role of Shape and Heart Rate on the Performance of the Left Ventricle
,”
ASME J. Biomech. Eng.
,
137
(
11
), p. 114501.10.1115/1.4031468
23.
Borazjani
,
I.
,
Ge
,
L.
,
Le
,
T.
, and
Sotiropoulos
,
F.
,
2013
, “
A Parallel Overset-Curvilinear-Immersed Boundary Framework for Simulating Complex 3D Incompressible Flows
,”
Comput. Fluids
,
77
, pp.
76
96
.10.1016/j.compfluid.2013.02.017
24.
Hedayat
,
M.
,
Akbarzadeh
,
A. M.
, and
Borazjani
,
I.
,
2022
, “
A Parallel Dynamic Overset Grid Framework for Immersed Boundary Methods
,”
Comput. Fluids
,
239
, p.
105378
.10.1016/j.compfluid.2022.105378
25.
Gilmanov
,
A.
, and
Sotiropoulos
,
F.
,
2005
, “
A Hybrid Cartesian/Immersed Boundary Method for Simulating Flows With 3D, Geometrically Complex, Moving Bodies
,”
J. Comput. Phys.
,
207
(
2
), pp.
457
492
.10.1016/j.jcp.2005.01.020
26.
Asgharzadeh
,
H.
, and
Borazjani
,
I.
,
2017
, “
A Newton–Krylov Method With an Approximate Analytical Jacobian for Implicit Solution of Navier–Stokes Equations on Staggered Overset-Curvilinear Grids With Immersed Boundaries
,”
J. Comput. Phys.
,
331
, pp.
227
256
.10.1016/j.jcp.2016.11.033
27.
Ge
,
L.
, and
Sotiropoulos
,
F.
,
2007
, “
A Numerical Method for Solving the 3D Unsteady Incompressible Navier–Stokes Equations in Curvilinear Domains With Complex Immersed Boundaries
,”
J. Comput. Phys.
,
225
(
2
), pp.
1782
1809
.10.1016/j.jcp.2007.02.017
28.
Pirola
,
S.
,
Cheng
,
Z.
,
Jarral
,
O. A.
,
O'Regan
,
D. P.
,
Pepper
,
J. R.
,
Athanasiou
,
T.
, and
Xu
,
X. Y.
,
2017
, “
On the Choice of Outlet Boundary Conditions for Patient-Specific Analysis of Aortic Flow Using Computational Fluid Dynamics
,”
J. Biomech.
,
60
, pp.
15
21
.10.1016/j.jbiomech.2017.06.005
29.
de Zé licourt
,
D.
,
Pekkan
,
K.
,
Kitajima
,
H.
,
Frakes, and
,
D.
, and
Yoganathan
,
A. P.
,
2005
, “
Single-Step Stereolithography of Complex Anatomical Models for Optical Flow Measurements
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
204
207
.10.1115/1.1835367
30.
Domenichini
,
F.
,
Pedrizzetti
,
G.
, and
Baccani
,
B.
,
2005
, “
Three-Dimensional Filling Flow Into a Model Left Ventricle
,”
J. Fluid Mech.
,
539
(
-1
), p.
179
.10.1017/S0022112005005550
31.
Domenichini
,
F.
, and
Pedrizzetti
,
G.
,
2011
, “
Intraventricular Vortex Flow Changes in the Infarcted Left Ventricle: Numerical Results in an Idealised 3D Shape
,”
Comput. Methods Biomech. Biomed. Eng.
,
14
(
1
), pp.
95
101
.10.1080/10255842.2010.485987
32.
Mangual
,
J.
,
Domenichini
,
F.
, and
Pedrizzetti
,
G.
,
2012
, “
Describing the Highly Three Dimensional Right Ventricle Flow
,”
Ann. Biomed. Eng.
,
40
(
8
), pp.
1790
1801
.10.1007/s10439-012-0540-5
33.
Rideout
,
V. C.
,
1991
,
Mathematical and Computer Modeling of Physiological Systems
,
Prentice Hall
,
Englewood Cliffs, NJ
.
34.
Weissler
,
A. M.
,
Harris
,
W. S.
, and
Schoenfeld
,
C. D.
,
1968
, “
Systolic Time Intervals in Heart Failure in Man
,”
Circulation
,
37
(
2
), pp.
149
159
.10.1161/01.CIR.37.2.149
35.
Bavo
,
A. M.
,
Pouch
,
A. M.
,
Degroote
,
J.
,
Vierendeels
,
J.
,
Gorman
,
J. H.
,
Gorman
,
R. C.
, and
Segers
,
P.
,
2016
, “
Patient-Specific Cfd Simulation of Intraventricular Haemodynamics Based on 3D Ultrasound Imaging
,”
Biomed. Eng. Online
,
15
(
1
), pp.
1
15
.10.1186/s12938-016-0231-9
36.
Gresho
,
P. M.
, and
Sani
,
R. L.
,
1987
, “
On Pressure Boundary Conditions for the Incompressible Navier-Stokes Equations
,”
Int. J. Numer. Methods Fluids
,
7
(
10
), pp.
1111
1145
.10.1002/fld.1650071008
37.
Vignon-Clementel
,
I. E.
,
Figueroa
,
C. A.
,
Jansen
,
K. E.
, and
Taylor
,
C. A.
,
2006
, “
Outflow Boundary Conditions for Three-Dimensional Finite Element Modeling of Blood Flow and Pressure in Arteries
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
29–32
), pp.
3776
3796
.10.1016/j.cma.2005.04.014
38.
Dasi
,
L. P.
,
Simon
,
H. A.
,
Sucosky
,
P.
, and
Yoganathan
,
A. P.
,
2009
, “
Fluid Mechanics of Artificial Heart Valves
,”
Clin. Exp. Pharmacol. Physiol.
,
36
(
2
), pp.
225
237
.10.1111/j.1440-1681.2008.05099.x
39.
Dasi
,
L.
,
Ge
,
L.
,
Simon
,
H.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A.
,
2007
, “
Vorticity Dynamics of a Bileaflet Mechanical Heart Valve in an Axisymmetric Aorta
,”
Phys. Fluids
,
19
(
6
), p.
067105
.10.1063/1.2743261
40.
Le
,
T. B.
, and
Sotiropoulos
,
F.
,
2013
, “
Fluid–Structure Interaction of an Aortic Heart Valve Prosthesis Driven by an Animated Anatomic Left Ventricle
,”
J. Comput. Phys.
,
244
, pp.
41
62
.10.1016/j.jcp.2012.08.036
41.
Hunt
,
J. C. R.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Stream, and Convergence Zones in Turbulent Flows
,”
Center for Turbulence Research, Stanford
, CA, Report No. CTR-S88, p. 193.https://www.researchgate.net/publication/234550074_Eddies_streams_and_convergence_zones_in_turbulent_flows
42.
Apel
,
J.
,
Paul
,
R.
,
Klaus
,
S.
,
Siess
,
T.
, and
Reul
,
H.
,
2001
, “
Assessment of Hemolysis Related Quantities in a Microaxial Blood Pump by Computational Fluid Dynamics
,”
Artif. Organs
,
25
(
5
), pp.
341
347
.10.1046/j.1525-1594.2001.025005341.x
43.
Ge
,
L.
,
Dasi
,
L. P.
,
Sotiropoulos
,
F.
, and
Yoganathan
,
A. P.
,
2008
, “
Characterization of Hemodynamic Forces Induced by Mechanical Heart Valves: Reynolds Vs. viscous Stresses
,”
Ann. Biomed. Eng.
,
36
(
2
), pp.
276
297
.10.1007/s10439-007-9411-x
44.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R. T.
, and
Dewanjee
,
M. K.
,
1997
, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
344
356
.10.1007/BF02648048
45.
Soares
,
J. S.
,
Sheriff
,
J.
, and
Bluestein
,
D.
,
2013
, “
A Novel Mathematical Model of Activation and Sensitization of Platelets Subjected to Dynamic Stress Histories
,”
Biomech. Model. Mechanobiol.
,
12
(
6
), pp.
1127
1141
.10.1007/s10237-013-0469-0
46.
Allen
,
P.
, and
Robertson
,
R.
,
1967
, “
The Significance of Intermittent Regurgitation in Aortic Valve Prostheses
,”
J. Thorac. Cardiovasc. Surg.
,
54
(
4
), pp.
549
552
.10.1016/S0022-5223(19)43063-8
47.
Gülan
,
U.
, and
Holzner
,
M.
,
2018
, “
The Influence of Bileaflet Prosthetic Aortic Valve Orientation on the Blood Flow Patterns in the Ascending Aorta
,”
Med. Eng. Phys.
,
60
, pp.
61
69
.10.1016/j.medengphy.2018.07.013
48.
Port
,
S.
,
Cobb
,
F. R.
,
Coleman
,
R. E.
, and
Jones
,
R. H.
,
1980
, “
Effect of Age on the Response of the Left Ventricular Ejection Fraction to Exercise
,”
New Engl. J. Med.
,
303
(
20
), pp.
1133
1137
.10.1056/NEJM198011133032001
49.
Buckberg
,
G. D.
,
Mahajan
,
A.
,
Jung
,
B.
,
Markl
,
M.
,
Hennig
,
J.
, and
Ballester-Rodes
,
M.
,
2006
, “
Mri Myocardial Motion and Fiber Tracking: A Confirmation of Knowledge From Different Imaging Modalities
,”
Eur. J. Cardio-Thorac. Surg.
,
29
(
Suppl_1
), pp.
S165
S177
.10.1016/j.ejcts.2006.02.064
You do not currently have access to this content.