Abstract

The objective of this study was to apply a biodegradable dynamic fixation system (BDFS) for lumbar fusion between articular processes and compare the fusion results and biomechanical changes with those of conventional rigid fixation. Twenty-four mongrel dogs were randomly assigned to 2 groups and subjected to either posterior lumbar fusion surgery with a BDFS or titanium rods (TRs) at the L5–L6 segments. Six animals in each group were sacrificed at 8 or 16 weeks. Fusion conditions were evaluated by computed tomography (CT), manual palpation, biomechanical tests, and histological analysis. Biomechanical tests were performed at the L4–7 (for range of motion (ROM)) and L5–6 (for fusion stiffness) segments. Histological examination was performed on organs, surrounding tissues, and the fused area. The magnesium alloy components maintained their initial shape 8 weeks after the operation, but the meshing teeth were almost completely degraded at 16 weeks. The biomechanical analysis revealed an increased lateral bending ROM at 8 weeks and axial torsion ROM at 16 weeks. The L4–5 extension–flexion ROMs in the BDFS group were 2.29 ± 0.86 deg and 3.17 ± 1.08 deg at 16 weeks, respectively, compared with 3.22 ± 0.56 deg and 5.55 ± 1.84 deg in TR group. However, both groups showed similar fusion results. The BDFS design is suitable, and its degradation in vivo is safe. The BDFS can be applied for posterior lumbar fusion between articular processes to complete the fusion well. Additionally, the BDFS can reduce the decline in lateral motion and hypermotion of the cranial adjacent segment in flexion–extension motion.

References

1.
Hagenmaier
,
F.
,
Kok
,
D.
,
Hol
,
A.
,
Rijnders
,
T.
,
Oner
,
F. C.
, and
van Susante
,
J. L. C.
,
2013
, “
Changes in Bone Mineral Density in the Intertransverse Fusion Mass After Instrumented Single-Level Lumbar Fusion: A Prospective 1-Year Follow-Up
,”
Spine
,
38
(
8
), pp.
696
702
.10.1097/BRS.0b013e318276fa27
2.
Kim
,
D. H.
,
Hwang
,
R. W.
,
Lee
,
G. H.
,
Joshi,
,
R.
,
Baker
,
K. C.
,
Arnold
,
P.
,
Sasso
,
R.
,
Park
,
D.
, and
Fischgrund
,
J.
,
2019
, “
Potential Significance of Facet Joint Fusion or Posteromedial Fusion Observed on CT Imaging Following Attempted Posterolateral or Posterior Interbody Fusion
,”
Spine J.
,
20
(
3
), pp.
337
343
.10.1016/j.spinee.2019.10.010
3.
Galimberti
,
F.
,
Lubelski
,
D.
,
Healy
,
A. T.
,
Wang
,
T.
,
Abdullah
,
K. G.
,
Nowacki
,
A. S.
,
Benzel
,
E. C.
, and
Mroz
,
T. E.
,
2015
, “
A Systematic Review of Lumbar Fusion Rates With and Without the Use of rhBMP-2
,”
Spine
,
40
(
14
), pp.
1132
1139
.10.1097/BRS.0000000000000971
4.
Li
,
H. M.
,
Zhang
,
R. J.
, and
Shen
,
C. L.
,
2019
, “
Differences in Radiographic and Clinical Outcomes of Oblique Lateral Interbody Fusion and Lateral Lumbar Interbody Fusion for Degenerative Lumbar Disease: A Meta-Analysis
,”
BMC Musculoskeletal Disord.
,
20
(
1
), p.
582
.10.1186/s12891-019-2972-7
5.
Luo
,
J.
,
Cao
,
K.
,
Yu
,
T.
, Li , L.,
Huang
,
S.
,
Gong
,
M.
,
Cao
,
C.
, and
Zou
,
X.
,
2017
, “
Comparison of Posterior Lumbar Interbody Fusion Versus Posterolateral Fusion for the Treatment of Isthmic Spondylolisthesis
,”
Clin. Spine Surg.
,
30
(
7
), pp.
E915
E922
.10.1097/BSD.0000000000000297
6.
Maruenda
,
J. I.
,
Barrios
,
C.
,
Garibo
,
F.
, and
Maruenda
,
B.
,
2016
, “
Adjacent Segment Degeneration and Revision Surgery After Circumferential Lumbar Fusion: Outcomes Throughout 15 Years of Follow-Up
,”
Eur. Spine J.
,
25
(
5
), pp.
1550
1557
.10.1007/s00586-016-4469-5
7.
Ghiselli
,
G.
,
Wang
,
J. C.
,
Bhatia
,
N. N.
,
Hsu
,
W. K.
, and
Dawson
,
E. G.
,
2004
, “
Adjacent Segment Degeneration in the Lumbar Spine
,”
J. Bone Jt. Surg. Am.
,
86
, pp.
1497
1503
.10.2106/00004623-200407000-00020
8.
Schulte
,
T. L.
,
Leistra
,
F.
,
Bullmann
,
V.
,
Osada
,
N.
,
Vieth
,
V.
,
Marquardt
,
B.
,
Lerner
,
T.
,
Liljenqvist
,
U.
, and
Hackenberg
,
L.
,
2007
, “
Disc Height Reduction in Adjacent Segments and Clinical Outcome 10 Years After Lumbar 360 Fusion
,”
Eur. Spine J.
,
16
(
12
), pp.
2152
2158
.10.1007/s00586-007-0515-7
9.
Nakashima
,
H.
,
Kawakami
,
N.
,
Tsuji
,
T.
,
Ohara
,
T.
,
Suzuki
,
Y.
,
Saito
,
T.
,
Nohara
,
A.
,
Tauchi
,
R.
,
Ohta
,
K.
,
Hamajima
,
N.
, and
Imagama
,
S.
,
2015
, “
Adjacent Segment Disease After Posterior Lumbar Interbody Fusion: Based on Cases With a Minimum of 10 Years of Follow-Up
,”
Spine
,
40
(
14
), pp.
E831
E841
.10.1097/BRS.0000000000000917
10.
Park
,
J. S.
,
Shim
,
K. D.
,
Song
,
Y. S.
, and
Park
,
Y. S.
,
2018
, “
Risk-Factor Analysis of Adjacent Segment Disease Requiring Surgery After Short Lumbar Fusion: The Influence of Rheumatoid Arthritis
,”
Spine J.
,
18
(
9
), pp.
1578
1583
.10.1016/j.spinee.2018.02.005
11.
Lee
,
J. C.
,
Kim
,
Y.
,
Soh
,
J. W.
, and
Shin
,
B. J.
,
2014
, “
Risk Factors of Adjacent Segment Disease Requiring Surgery After Lumbar Spinal Fusion: Comparison of Posterior Lumbar Interbody Fusion and Posterolateral Fusion
,”
Spine
,
39
(
5
), pp.
E339
E345
.10.1097/BRS.0000000000000164
12.
Kaito
,
T.
,
Hosono
,
N.
,
Mukai
,
Y.
,
Makino
,
T.
,
Fuji
,
T.
, and
Yonenobu
,
K.
,
2010
, “
Induction of Early Degeneration of the Adjacent Segment After Posterior Lumbar Interbody Fusion by Excessive Distraction of Lumbar Disc Space
,”
J. Neurosurg. Spine
,
12
(
6
), pp.
671
679
.10.3171/2009.12.SPINE08823
13.
Sears
,
W. R.
,
Sergides
,
I. G.
,
Kazemi
,
N.
,
Smith
,
M.
,
White
,
G. J.
, and
Osburg
,
B.
,
2011
, “
Incidence and Prevalence of Surgery at Segments Adjacent to a Previous Posterior Lumbar Arthrodesis
,”
Spine J.
,
11
(
1
), pp.
11
20
.10.1016/j.spinee.2010.09.026
14.
St-Pierre
,
G. H.
,
Jack
,
A.
,
Siddiqui
,
M. M.
,
Henderson
,
R. L.
, and
Nataraj
,
A.
,
2016
, “
Nonfusion Does Not Prevent Adjacent Segment Disease: Dynesys Long-Term Outcomes With Minimum Five-Year Follow-Up
,”
Spine
,
41
(
3
), pp.
265
273
.10.1097/BRS.0000000000001158
15.
Yang
,
M.
,
Li
,
C.
,
Chen
,
Z.
,
Bai
,
Y.
, and
Li
,
M.
,
2014
, “
Short Term Outcome of Posterior Dynamic Stabilization System in Degenerative Lumbar Diseases
,”
Indian J. Orthop.
,
48
(
6
), pp.
574
581
.10.4103/0019-5413.144222
16.
Tachibana
,
N.
,
Kawamura
,
N.
,
Kobayashi
,
D.
,
Shimizu
,
T.
,
Sasagawa
,
T.
,
Masuyama
,
S.
,
Hirao
,
Y.
, and
Kunogi
,
J.
,
2017
, “
Preventive Effect of Dynamic Stabilization Against Adjacent Segment Degeneration After Posterior Lumbar Interbody Fusion
,”
Spine
,
42
, pp.
25
32
.10.1097/BRS.0000000000001654
17.
Xi
,
C.
,
Li
,
Y.
,
Chi
,
Z.
,
Pei
,
L.
,
Ji
,
Y.
,
Wang
,
X.
, and
Yan
,
J.
,
2011
, “
The Influence of Orthotopic Paraspinal Muscle-Pediculated Bone Flaps on Posterior Spinal Fusion in a Canine Model
,”
Spine
,
36
, pp.
E20
E26
.10.1097/BRS.0b013e3181d323c6
18.
Wang
,
N.
,
Xie
,
H.
,
Xi
,
C.
,
Zhang
,
H.
, and
Yan
,
J.
,
2017
, “
A Study to Compare the Efficacy of Polyether Ether Ketone Rod Device With Titanium Devices in Posterior Spinal Fusion in a Canine Model
,”
J. Orthop. Surg. Res.
,
12
(
1
), p.
40
.10.1186/s13018-017-0543-x
19.
Korovessis
,
P.
,
Repantis
,
T.
,
Zacharatos
,
S.
, and
Zafiropoulos
,
A.
,
2009
, “
Does Wallis Implant Reduce Adjacent Segment Degeneration Above Lumbosacral Instrumented Fusion
,”
Eur. Spine J.
,
18
(
6
), pp.
830
840
.10.1007/s00586-009-0976-y
20.
Hegewald
,
A. A.
,
Hartmann
,
S.
,
Keiler
,
A.
,
Scheufler
,
K. M.
,
Thomé
,
C.
, and
Schmoelz
,
W.
,
2018
, “
Biomechanical Investigation of Lumbar Hybrid Stabilization in Two-Level Posterior Instrumentation
,”
Eur. Spine J.
,
27
(
8
), pp.
1887
1894
.10.1007/s00586-017-5415-x
21.
Li
,
X.
,
Liu
,
X.
,
Wu
,
S.
,
Yeung
,
K. W. K.
,
Zheng
,
Y.
, and
Chu
,
P. K.
,
2016
, “
Design of Magnesium Alloys With Controllable Degradation for Biomedical Implants: From Bulk to Surface
,”
Acta Biomater.
,
45
, pp.
2
30
.10.1016/j.actbio.2016.09.005
22.
Jang
,
Y.
,
Tan
,
Z.
,
Jurey
,
C.
,
Collins
,
B.
,
Badve
,
A.
,
Dong
,
Z.
,
Park
,
C.
,
Kim
,
C. S.
,
Sankar
,
J.
, and
Yun
,
Y.
,
2014
, “
Systematic Understanding of Corrosion Behavior of Plasma Electrolytic Oxidation Treated AZ31 Magnesium Alloy Using a Mouse Model of Subcutaneous Implant
,”
Mater. Sci. Eng. C
,
45
, pp.
45
55
.10.1016/j.msec.2014.08.052
23.
Sun
,
W.
,
Zhang
,
G.
,
Tan
,
L.
,
Yang
,
K.
, and
Ai
,
H.
,
2016
, “
The Fluoride Coated AZ31B Magnesium Alloy Improves Corrosion Resistance and Stimulates Bone Formation in Rabbit Model
,”
Mater. Sci. Eng. C
,
63
, pp.
506
511
.10.1016/j.msec.2016.03.016
24.
Willbold
,
E.
,
Kaya
,
A. A.
,
Kaya
,
R. A.
,
Beckmann
,
F.
, and
Witte
,
F.
,
2011
, “
Corrosion of Magnesium Alloy AZ31 Screws is Dependent on the Implantation site
,”
Mater. Sci. Eng.: B
,
176
(
20
), pp.
1835
1840
.10.1016/j.mseb.2011.02.010
25.
Henderson
,
S. E.
,
Verdelis
,
K.
,
Maiti
,
S.
,
Pal
,
S.
,
Chung
,
W. L.
,
Chou
,
D.-T.
,
Kumta
,
P. N.
, and
Almarza
,
A. J.
,
2014
, “
Magnesium Alloys as a Biomaterial for Degradable Craniofacial Screws
,”
Acta Biomater.
,
10
(
5
), pp.
2323
2332
.10.1016/j.actbio.2013.12.040
26.
Gordon
,
M.
,
Peppelman
,
W. C.
,
Beutler
,
W.
,
O'halloran
,
D.
,
Chinthakunta
,
S. R.
, and
Bucklen
,
B.
,
2017
, “
An In Vitro Evaluation of Fracture Reduction Achieved by Inflatable Bone Tamps Under Simulated Physiological Load
,”
Clin. Spine Surg.
,
30
, pp.
E31
E37
.10.1097/BSD.0b013e31829a37ce
27.
Fu
,
L.
,
Ma
,
J.
,
Lu
,
B.
,
Jia
,
H.
,
Zhao
,
J.
,
Kuang
,
M.
,
Feng
,
R.
,
Xu
,
L.
,
Bai
,
H.
,
Sun
,
L.
,
Wang
,
Y.
, and
Ma
,
X.
,
2017
, “
Biomechanical Effect of Interspinous Process Distraction Height After Lumbar Fixation Surgery: An In Vitro Model
,”
Proc. Inst. Mech. Eng., Part H
,
231
(
7
), pp.
663
672
.10.1177/0954411917700446
28.
Benninger
,
M. I.
,
Seiler
,
G. S.
,
Robinson
,
L. E.
,
Ferguson
,
S. J.
,
Bonél
,
H. M.
,
Busato
,
A. R.
, and
Lang
,
J.
,
2004
, “
Three-Dimensional Motion Pattern of the Caudal Lumbar and Lumbosacral Portions of the Vertebral Column of Dogs
,”
Am. J. Vet. Res.
,
65
(
5
), pp.
544
551
.10.2460/ajvr.2004.65.544
29.
Smolders
,
L. A.
,
Kingma
,
I.
,
Bergknut
,
N.
,
van der Veen
,
A. J.
,
Dhert
,
W. J.
,
Hazewinkel
,
H. A.
,
van Dieën
,
J. H.
, and
Meij
,
B. P.
,
2012
, “
Biomechanical Assessment of the Effects of Decompressive Surgery in Non-Chondrodystrophic and Chondrodystrophic Canine Multisegmented Lumbar Spines
,”
Eur. Spine J.
,
21
(
9
), pp.
1692
1699
.10.1007/s00586-012-2285-0
30.
Lina
,
I. A.
,
Puvanesarajah
,
V.
,
Liauw
,
J. A.
,
Lo
,
S. F.
,
Santiago-Dieppa
,
D. R.
,
Hwang
,
L.
,
Mao
,
A.
,
Bydon
,
A.
,
Wolinsky
,
J. P.
,
Sciubba
,
D. M.
,
Gokaslan
,
Z.
,
Holmes
,
C.
, and
Witham
,
T. F.
,
2014
, “
Quantitative Study of Parathyroid Hormone (1-34) and Bone Morphogenetic Protein-2 on Spinal Fusion Outcomes in a Rabbit Model of Lumbar Dorsolateral Intertransverse Process Arthrodesis
,”
Spine
,
39
(
5
), pp.
347
355
.10.1097/BRS.0000000000000169
31.
Xia
,
X. P.
,
Chen
,
H. L.
, and
Cheng
,
H. B.
,
2013
, “
Prevalence of Adjacent Segment Degeneration After Spine Surgery: A Systematic Review and Meta-Analysis
,”
Spine
,
38
(
7
), pp.
597
608
.10.1097/BRS.0b013e318273a2ea
32.
Strube
,
P.
,
Tohtz
,
S.
,
Hoff
,
E.
,
Gross
,
C.
,
Perka
,
C.
, and
Putzier
,
M.
,
2010
, “
Dynamic Stabilization Adjacent to Single-Level Fusion—Part I: Biomechanical Effects on Lumbar Spinal Motion
,”
Eur. Spine J.
,
19
(
12
), pp.
2171
2180
.10.1007/s00586-010-1549-9
33.
Malakoutian
,
M.
,
Volkheimer
,
D.
,
Street
,
J.
,
Dvorak
,
M. F.
,
Wilke
,
H. J.
, and
Oxland
,
T. R.
,
2015
, “
Do In Vivo Kinematic Studies Provide Insight Into Adjacent Segment Degeneration? A Qualitative Systematic Literature Review
,”
Eur. Spine J.
,
24
(
9
), pp.
1865
1881
.10.1007/s00586-015-3992-0
34.
Zhang
,
C.
,
Wang
,
L.
,
Hou
,
T.
,
Luo
,
L.
,
Zhao
,
C.
,
Gan
,
Y.
,
Zhou
,
Q.
, and
Li
,
P.
,
2017
, “
The Influence of L4–S1 Dynesys® Dynamic Stabilization Versus Fusion on Lumbar Motion and Its Relationship With Lumbar Degeneration: A Retrospective Study
,”
J. Orthop. Surg. Res.
,
12
(
1
), p.
99
.10.1186/s13018-017-0597-9
35.
Wang
,
Q.
,
Liu
,
J.
,
Shi
,
Y.
,
Chen
,
Y.
,
Yu
,
H.
,
Ma
,
J.
,
Ren
,
W.
,
Yang
,
H.
,
Wang
,
H.
, and
Xiang
,
L.
,
2016
, “
Short-Term Effects of a Dynamic Neutralization System (Dynesys) for Multi-Segmental Lumbar Disc Herniation
,”
Eur. Spine J.
,
25
(
5
), pp.
1409
1416
.10.1007/s00586-015-4307-1
36.
Iglesias
,
C.
,
Bodelón
,
O. G.
,
Montoya
,
R.
,
Clemente
,
C.
,
Garcia-Alonso
,
M. C.
,
Rubio
,
J. C.
, and
Escudero
,
M. L.
,
2015
, “
Fracture Bone Healing and Biodegradation of AZ31 Implant in Rats
,”
Biomed. Mater.
,
10
(
2
), p.
025008
.10.1088/1748-6041/10/2/025008
37.
Zhuang
,
J.
,
Jing
,
Y.
,
Wang
,
Y.
,
Zhang
,
J.
,
Xie
,
H.
, and
Yan
,
J.
,
2016
, “
Degraded and Osteogenic Properties of Coated Magnesium Alloy AZ31; An Experimental Study
,”
J. Orthop. Surg. Res.
,
11
(
1
), p.
30
.10.1186/s13018-016-0362-5
38.
Wong
,
H. M.
,
Yeung
,
K. W. K.
,
Lam
,
K. O.
,
Tam
,
V.
,
Chu
,
P. K.
,
Luk
,
K. D.
, and
Cheung
,
K. M.
,
2010
, “
A Biodegradable Polymerbased Coating to Control the Performance of Magnesium Alloy Orthopaedic Implants
,”
Biomaterials
,
31
(
8
), pp.
2084
2096
.10.1016/j.biomaterials.2009.11.111
39.
Vizcaino Reves
,
N.
,
Burki
,
A.
,
Ferguson
,
S.
,
Geissbuhler
,
U.
,
Stahl
,
C.
, and
Forterre
,
F.
,
2012
, “
Influence of Partial Lateral Corpectomy With and Without Hemilaminectomy on Canine Thoracolumbar Stability: A Biomechanical Study
,”
Vet. Surg.
,
41
(
2
), pp.
228
234
.10.1111/j.1532-950X.2011.00912.x
40.
Wachs
,
K.
,
Fischer
,
M. S.
, and
Schilling
,
N.
,
2016
, “
Three-Dimensional Movements of the Pelvis and the Lumbar Intervertebral Joints in Walking and Trotting Dogs
,”
Vet. J.
,
210
, pp.
46
55
.10.1016/j.tvjl.2015.12.009
41.
Kise
,
Y.
,
Kuniyoshi
,
Y.
,
Inafuku
,
H.
,
Nagano
,
T.
,
Hirayasu
,
T.
, and
Yamashiro
,
S.
,
2015
, “
Directly Measuring Spinal Cord Blood Flow and Spinal Cord Perfusion Pressure Via the Collateral Network: Correlations With Changes in Systemic Blood Pressure
,”
J. Thorac. Cardiovasc. Surg.
,
149
(
1
), pp.
360
366
.10.1016/j.jtcvs.2014.09.121
42.
Staiger
,
M. P.
,
Pietak
,
A. M.
,
Huadmai
,
J.
, and
Dias
,
G.
,
2006
, “
Magnesium and Its Alloys as Orthopedic Biomaterials: A Review
,”
Biomaterials
,
27
(
9
), pp.
1728
1734
.10.1016/j.biomaterials.2005.10.003
43.
McAfee
,
P. C.
,
Farey
,
I. D.
,
Sutterlin
,
C. E.
,
Gurr
,
K. R.
,
Warden
,
K. E.
, and
Cunningham
,
B. W.
,
1991
, “
The Effect of Spinal Implant Rigidity on Vertebral Bone Density A Canine Mode
,”
Spine
,
16
(
6 Suppl
.), pp.
S190
S197
.10.1097/00007632-199106001-00003
44.
Mataki
,
K.
,
Fukushima
,
M.
,
Kaneoka
,
K.
,
Ikeda
,
K.
,
Kumagai
,
H.
,
Nagashima
,
K.
,
Miura
,
K.
,
Noguchi
,
H.
,
Funayama
,
T.
,
Abe
,
T.
,
Koda
,
M.
, and
Yamazaki
,
M.
,
2018
, “
Vertebral Fracture After Removing Pedicle Screws Used for Posterior Lumbar Interbody Fusion: A Case Report
,”
J. Clin. Neurosci.
,
57
, pp.
182
184
.10.1016/j.jocn.2018.04.019
45.
Chen
,
Y.
,
Xu
,
Z.
,
Smith
,
C.
, and
Sankar
,
J.
,
2014
, “
Recent Advances on the Development of Magnesium Alloys for Biodegradable Implants
,”
Acta Biomater.
,
10
(
11
), pp.
4561
4573
.10.1016/j.actbio.2014.07.005
46.
Han
,
P.
,
Cheng
,
P.
,
Zhang
,
S.
,
Zhao
,
C.
,
Ni
,
J.
,
Zhang
,
Y.
,
Zhong
,
W.
,
Hou
,
P.
,
Zhang
,
X.
,
Zheng
,
Y.
, and
Chai
,
Y.
,
2015
, “
In Vitro and In Vivo Studies on the Degradation of High-Purity Mg (99.99 wt.%) Screw With Femoral Intracondylar Fractured Rabbit Model
,”
Biomaterials
,
64
, pp.
57
69
.10.1016/j.biomaterials.2015.06.031
47.
Shin
,
J.-H.
,
Wang
,
S.
,
Yao
,
Q.
,
Wood
,
K. B.
, and
Li
,
G.
,
2013
, “
Investigation of Coupled Bending of the Lumbar Spine During Dynamic Axial Rotation of the Body
,”
Eur. Spine J.
,
22
(
12
), pp.
2671
2677
.10.1007/s00586-013-2777-6
48.
Hilibrand
,
A. S.
, and
Robbins
,
M.
,
2004
, “
Adjacent Segment Degeneration and Adjacent Segment Disease: The Consequences of Spinal Fusion?
,”
Spine J.
,
4
(
6 Suppl
.), pp.
190S
194S
.10.1016/j.spinee.2004.07.007
You do not currently have access to this content.