Abstract

Rupture risk assessment of abdominal aortic aneurysms (AAAs) by means of quantifying wall stress is a common biomechanical strategy. However, the clinical translation of this approach has been greatly limited due to the complexity associated with the computational tools required for its implementation. Thus, being able to estimate wall stress using nonbiomechanical markers that can be quantified as a direct outcome of clinical image segmentation would be advantageous in improving the potential implementation of said strategy. In the present work, we investigated the use of geometric indices to predict patient-specific AAA wall stress by means of a novel neural network (NN) modeling approach. We conducted a retrospective review of existing clinical images of two patient groups: 98 asymptomatic and 50 symptomatic AAAs. The images were subject to a protocol consisting of image segmentation, processing, volume meshing, finite element modeling, and geometry quantification, from which 53 geometric indices and the spatially averaged wall stress (SAWS) were calculated. SAWS estimated from finite element analysis was considered the gold standard for the predictions. We developed feed-forward NN models composed of an input layer, two dense layers, and an output layer using Keras, a deep learning library in python. The NN models were trained, tested, and validated independently for both AAA groups using all geometric indices, as well as a reduced set of indices resulting from a variable reduction procedure. We compared the performance of the NN models with two standard machine learning algorithms (MARS: multivariate adaptive regression splines and GAM: generalized additive model) and a linear regression model (GLM: generalized linear model). With the reduced sets of indices, the NN-based approach exhibited the highest mean goodness-of-fit (for the symptomatic group 0.71 and for the asymptomatic group 0.79) and lowest mean relative error (17% for both groups). In contrast, MARS yielded a mean goodness-of-fit of 0.59 for the symptomatic group and 0.77 for the asymptomatic group, with relative errors of 17% for the symptomatic group and 22% for the asymptomatic group. GAM had a mean goodness-of-fit of 0.70 for the symptomatic group and 0.80 for the asymptomatic group, with relative errors of 16% for the symptomatic group and 20% for the asymptomatic group. GLM did not perform as well as the other algorithms, with a mean goodness-of-fit of 0.53 for the symptomatic group and 0.70 for the asymptomatic group, with relative errors of 19% for the symptomatic group and 23% for the asymptomatic group. Nevertheless, the NN models required a reduced set of 15 and 13 geometric indices to predict SAWS for the symptomatic and asymptomatic AAA groups, respectively. This was in contrast to the reduced set of nine and eight geometric indices required to predict SAWS with the MARS and GAM algorithms for each AAA group, respectively. The use of NN modeling represents a promising alternative methodology for the estimation of AAA wall stress using geometric indices as surrogates, in lieu of finite element modeling. The performance metrics of NN models are expected to improve with significantly larger group sizes, given the suitability of NN modeling for “big data” applications.

References

1.
Reimerink
,
J. J.
,
van der Laan
,
M. J.
,
Koelemay
,
M. J.
,
Balm
,
R.
, and
Legemate
,
D. A.
,
2013
, “
Systematic Review and Meta-Analysis of Population-Based Mortality From Ruptured Abdominal Aortic Aneurysm
,”
Br. J. Surg.
,
100
(
11
), pp.
1405
1413
.10.1002/bjs.9235
2.
Martufi
,
G.
,
Lindquist Liljeqvist
,
M.
,
Sakalihasan
,
N.
,
Panuccio
,
G.
,
Hultgren
,
R.
,
Roy
,
J.
, and
Gasser
,
T. C.
,
2016
, “
Local Diameter, Wall Stress, and Thrombus Thickness Influence the Local Growth of Abdominal Aortic Aneurysms
,”
J. Endovasc. Ther.
,
23
(
6
), pp.
957
966
.10.1177/1526602816657086
3.
Hirsch
,
A. T.
,
Haskal
,
Z. J.
,
Hertzer
,
N. R.
,
Bakal
,
C. W.
,
Creager
,
M. A.
,
Halperin
,
J. L.
,
Hiratzka
,
L. F.
,
Murphy
,
W. R.
,
Olin
,
J. W.
,
Puschett
,
J. B.
,
Rosenfield
,
K. A.
,
Sacks
,
D.
,
Stanley
,
J. C.
,
Taylor
,
L. M.
, Jr.
,
White
,
C. J.
,
White
,
J.
,
White
,
R. A.
,
Antman
,
E. M.
,
Smith
,
S. C.
, Jr.
, and
Adams
,
C. D.
, …
Vascular Disease Foundation,
2006
, “
ACC/AHA 2005 Practice Guidelines for the Management of Patients With Peripheral Arterial Disease (Lower Extremity, Renal, Mesenteric, and Abdominal Aortic): A Collaborative Report From the American Association for Vascular Surgery/Society for Vascular Surgery, Society for Cardiovascular Angiography and Interventions, Society for Vascular Medicine and Biology, Society of Interventional Radiology, and the ACC/AHA Task Force on Practice Guidelines (Writing Committee to Develop Guidelines for the Management of Patients With Peripheral Arterial Disease): Endorsed by the American Association of Cardiovascular and Pulmonary Rehabilitation; National Heart, Lung, and Blood Institute; Society for Vascular Nursing; TransAtlantic Inter-Society Consensus; and Vascular Disease Foundation
,”
Circulation
,
113
(
11
), pp.
463
654
.10.1161/CIRCULATIONAHA.106.174526
4.
Harthun
,
N. L.
,
2008
, “
Current Issues in the Treatment of Women With Abdominal Aortic Aneurysm
,”
Gend. Med.
,
5
(
1
), pp.
36
43
.10.1016/S1550-8579(08)80006-X
5.
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Raghavan
,
M. L.
, and
Kennedy
,
F. E.
,
2003
, “
Prediction of Rupture Risk in Abdominal Aortic Aneurysm During Observation: Wall Stress Versus Diameter
,”
J. Vasc. Surg.
,
37
(
4
), pp.
724
732
.10.1067/mva.2003.213
6.
Vorp
,
D. A.
, and
Vande Geest
,
J. P.
,
2005
, “
Biomechanical Determinants of Abdominal Aortic Aneurysm Rupture
,”
Arterioscler. Thromb. Vasc. Biol.
,
25
(
8
), pp.
1558
1566
.10.1161/01.ATV.0000174129.77391.55
7.
Giannoglou
,
G.
,
Giannakoulas
,
G.
,
Soulis
,
J.
,
Chatzizisis
,
Y.
,
Perdikides
,
T.
,
Melas
,
N.
,
Parcharidis
,
G.
, and
Louridas
,
G.
,
2006
, “
Predicting the Risk of Rupture of Abdominal Aortic Aneurysms by Utilizing Various Geometrical Parameters: Revisiting the Diameter Criterion
,”
Angiology
,
57
(
4
), pp.
487
494
.10.1177/0003319706290741
8.
Vande Geest
,
J. P.
,
Di Martino
,
E. S.
,
Bohra
,
A.
,
Makaroun
,
M. S.
, and
Vorp
,
D. A.
,
2006
, “
A Biomechanics-Based Rupture Potential Index for Abdominal Aortic Aneurysm Risk Assessment: Demonstrative Application
,”
Ann. N. Y. Acad. Sci.
,
1085
(
1
), pp.
11
21
.10.1196/annals.1383.046
9.
Pappu
,
S.
,
Dardik
,
A.
,
Tagare
,
H.
, and
Gusberg
,
R. J.
,
2008
, “
Beyond Fusiform and Saccular: A Novel Quantitative Tortuosity Index May Help Classify Aneurysm Shape and Predict Aneurysm Rupture Potential
,”
Ann. Vasc. Surg.
,
22
(
1
), pp.
88
97
.10.1016/j.avsg.2007.09.004
10.
Martufi
,
G.
,
Di Martino
,
E. S.
,
Amon
,
C. H.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2009
, “
Three-Dimensional Geometrical Characterization of Abdominal Aortic Aneurysms: Image-Based Wall Thickness Distribution
,”
ASME J. Biomech. Eng.
,
131
(
6
), p.
061015
.10.1115/1.3127256
11.
Gasser
,
T. C.
,
Auer
,
M.
,
Labruto
,
F.
,
Swedenborg
,
J.
, and
Roy
,
J.
,
2010
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms: Model Complexity Versus Predictability of Finite Element Simulations
,”
Eur. J. Vasc. Endovasc. Surg.
,
40
(
2
), pp.
176
185
.10.1016/j.ejvs.2010.04.003
12.
Maier
,
A.
,
Gee
,
M. W.
,
Reeps
,
C.
,
Pongratz
,
J.
,
Eckstein
,
H. H.
, and
Wall
,
W. A.
,
2010
, “
A Comparison of Diameter, Wall Stress, and Rupture Potential Index for Abdominal Aortic Aneurysm Rupture Risk Prediction
,”
Ann. Biomed. Eng.
,
38
(
10
), pp.
3124
3134
.10.1007/s10439-010-0067-6
13.
Polzer
,
S.
, and
Gasser
,
T. C.
,
2015
, “
Biomechanical Rupture Risk Assessment of Abdominal Aortic Aneurysms Based on a Novel Probabilistic Rupture Risk Index
,”
J. R. Soc. Interface
,
12
(
113
), p.
20150852
.10.1098/rsif.2015.0852
14.
Chauhan
,
S. S.
,
Gutierrez
,
C. A.
,
Thirugnanasambandam
,
M.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
,
Eskandari
,
M. K.
, and
Finol
,
E. A.
,
2017
, “
The Association Between Geometry and Wall Stress in Emergently Repaired Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
45
(
8
), pp.
1908
1916
.10.1007/s10439-017-1837-1
15.
Leemans
,
E. L.
,
Willems
,
T. P.
,
van der Laan
,
M. J.
,
Slump
,
C. H.
, and
Zeebregts
,
C. J.
,
2017
, “
Biomechanical Markers for Rupture Risk Estimation in Abdominal Aortic Aneurysms
,”
J. Endovasc. Ther.
,
24
(
2
), pp.
254
261
.10.1177/1526602816680088
16.
Wu
,
W.
,
Rengarajan
,
B.
,
Thirugnanasambandam
,
M.
,
Parikh
,
S.
,
Gomez
,
R.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2019
, “
Wall Stress and Geometry Measures in Electively Repaired Abdominal Aortic Aneurysms
,”
Ann. Biomed. Eng.
,
47
(
7
), pp.
1611
1625
.10.1007/s10439-019-02261-w
17.
Georgakarakos
,
E.
,
Ioannou
,
C. V.
,
Kamarianakis
,
Y.
,
Papaharilaou
,
Y.
,
Kostas
,
T.
,
Manousaki
,
E.
, and
Katsamouris
,
A. N.
,
2010
, “
The Role of Geometric Parameters in the Prediction of Abdominal Aortic Aneurysm Wall Stress
,”
Eur. J. Vasc. Endovasc. Surg.
,
39
(
1
), pp.
42
48
.10.1016/j.ejvs.2009.09.026
18.
Washington
,
C. B.
,
Shum
,
J.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2011
, “
The Association of Wall Mechanics and Morphology: A Case Study of Abdominal Aortic Aneurysm Growth
,”
ASME J. Biomech. Eng.
,
133
(
10
), p.
104501
.10.1115/1.4005176
19.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
, and
Finol
,
E. A.
,
2013
, “
The Role of Geometric and Biomechanical Factors in Abdominal Aortic Aneurysm Rupture Risk Assessment
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1459
1477
.10.1007/s10439-013-0786-6
20.
Raut
,
S. S.
,
Chandra
,
S.
,
Shum
,
J.
,
Washington
,
C. B.
,
Muluk
,
S. C.
,
Finol
,
E. A.
, and
Rodriguez
,
J. F.
,
2013
, “
Biological, Geometric and Biomechanical Factors Influencing Abdominal Aortic Aneurysm Rupture Risk: A Comprehensive Review
,”
Recent Pat. Med. Imaging
,
3
(
1
), pp.
44
59
.10.2174/1877613211303010006
21.
Urrutia
,
J.
,
Roy
,
A.
,
Raut
,
S. S.
,
Anton
,
R.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2018
, “
Geometric Surrogates of Abdominal Aortic Aneurysm Wall Mechanics
,”
Med. Eng. Phys.
,
59
, pp.
43
49
.10.1016/j.medengphy.2018.06.007
22.
Milos
,
R.
,
Dejan
,
P.
, and
Nenad
,
F.
,
2011
, “
Mining Data From CFD Simulation for Aneurysm and Carotid Bifurcation Models
,”
Conference Proceedings—IEEE Engineering in Medicine and Biology Society
, Boston, MA, Aug. 30–Sept. 3, pp.
8311
8314
.10.1109/IEMBS.2011.6092049
23.
Blagojević
,
M. D.
,
Radović
,
M. D.
,
Radović
,
M. M.
, and
Filipović
,
N. D.
,
2015
, “
Neural Network Based Approach for Predicting Maximal Wall Shear Stress in the Artery
,” 2015 IEEE 15th International Conference on Bioinformatics and Bioengineering (
BIBE
), Belgrade, Serbia, Nov. 2–4, pp.
1
5
.10.1109/BIBE.2015.7367713
24.
Soudah
,
E.
,
Rodriguez
,
J. F.
, and
Lopez
,
R.
,
2015
, “
Mechanical Stress in Abdominal Aortic Aneurysms Using Artificial Neural Networks
,”
J. Mech. Med. Biol.
,
15
(
03
), p.
1550029
.10.1142/S0219519415500293
25.
Madani
,
A.
,
Bakhaty
,
A.
,
Kim
,
J.
,
Mubarak
,
Y.
, and
Mofrad
,
M.
,
2019
, “
Bridging Finite Element and Machine Learning Modeling: Stress Prediction of Arterial Walls in Atherosclerosis
,”
ASME J. Biomech. Eng.
,
141
(
8
), p.
084502
.10.1115/1.4043290
26.
Shum
,
J.
,
2011
,
Risk Assessment of Abdominal Aortic Aneurysms by Geometry Quantification Measures
,
Carnegie Mellon University
,
Pittsburgh, PA
.
27.
Raut
,
S. S.
,
Jana
,
A.
,
De Oliveira
,
V.
,
Muluk
,
S. C.
, and
Finol
,
E. A.
,
2014
, “
The Effect of Uncertainty in Vascular Wall Material Properties on Abdominal Aortic Aneurysm Wall Mechanics
,”
Computational Biomechanics for Medicine
,
B.
Doyle
,
K.
Miller
,
A.
Wittek
, and
P. M. F.
Nielsen
, eds.,
Springer New York
,
New York
, pp.
69
86
.
28.
Raut
,
S. S.
,
2012
,
Patient-Specific 3D Vascular Reconstruction and Computational Assessment of Biomechanics—An Application to Abdominal Aortic Aneurysm
,
Carnegie Mellon University
,
Pittsburgh, PA
.
29.
Raut
,
S. S.
,
Liu
,
P.
, and
Finol
,
E. A.
,
2015
, “
An Approach for Patient-Specific Multi-Domain Vascular Mesh Generation Featuring Spatially Varying Wall Thickness Modeling
,”
J. Biomech.
,
48
(
10
), pp.
1972
1981
.10.1016/j.jbiomech.2015.04.006
30.
Venkatasubramaniam
,
A. K.
,
Fagan
,
M. J.
,
Mehta
,
T.
,
Mylankal
,
K. J.
,
Ray
,
B.
,
Kuhan
,
G.
,
Chetter
,
I. C.
, and
McCollum
,
P. T.
,
2004
, “
A Comparative Study of Aortic Wall Stress Using Finite Element Analysis for Ruptured and Non-Ruptured Abdominal Aortic Aneurysms
,”
Eur. J. Vasc. Endovasc. Surg.
,
28
(
2
), pp.
168
176
.10.1016/j.ejvs.2004.03.029
31.
Raghavan
,
M. L.
, and
Vorp
,
D. A.
,
2000
, “
Toward a Biomechanical Tool to Evaluate Rupture Potential of Abdominal Aortic Aneurysm: Identification of a Finite Strain Constitutive Model and Evaluation of Its Applicability
,”
J. Biomech.
,
33
(
4
), pp.
475
482
.10.1016/S0021-9290(99)00201-8
32.
Raghavan
,
M. L.
,
Kratzberg
,
J.
,
Castro de Tolosa
,
E. M.
,
Hanaoka
,
M. M.
,
Walker
,
P.
, and
da Silva
,
E. S.
,
2006
, “
Regional Distribution of Wall Thickness and Failure Properties of Human Abdominal Aortic Aneurysm
,”
J. Biomech.
,
39
(
16
), pp.
3010
3016
.10.1016/j.jbiomech.2005.10.021
33.
Shum
,
J.
,
DiMartino
,
E. S.
,
Goldhamme
,
A.
,
Goldman
,
D. H.
,
Acker
,
L. C.
,
Patel
,
G.
,
Ng
,
J. H.
,
Martufi
,
G.
, and
Finol
,
E. A.
,
2010
, “
Semiautomatic Vessel Wall Detection and Quantification of Wall Thickness in Computed Tomography Images of Human Abdominal Aortic Aneurysms
,”
Med. Phys.
,
37
(
2
), pp.
638
648
.10.1118/1.3284976
34.
Shum
,
J.
,
Xu
,
A.
,
Chatnuntawech
,
I.
, and
Finol
,
E. A.
,
2011
, “
A Framework for the Automatic Generation of Surface Topologies for Abdominal Aortic Aneurysm Models
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
249
259
.10.1007/s10439-010-0165-5
35.
Lee
,
K.
,
Zhu
,
J.
,
Shum
,
J.
,
Zhang
,
Y.
,
Muluk
,
S. C.
,
Chandra
,
A.
,
Eskandari
,
M. K.
, and
Finol
,
E. A.
,
2013
, “
Surface Curvature as a Classifier of Abdominal Aortic Aneurysms: A Comparative Analysis
,”
Ann. Biomed. Eng.
,
41
(
3
), pp.
562
576
.10.1007/s10439-012-0691-4
36.
Wood
,
S.
,
2017
,
Generalized Additive Models: An Introduction With R
, 2nd ed.,
Chapman and Hall/CRC
, Boca Raton, FL.
37.
Milborrow
,
S.
,
2011
, “
Derived From MDA: MARS by T. Hastie and R. Tibshirani
,”
Earth: Multivariate Adaptive Regression Splines
,
R Package
.https://cran.rproject.org/web/packages/earth/earth.pdf
38.
Chen
,
S. Y.
,
Feng
,
Z.
, and
Yi
,
X.
,
2017
, “
A General Introduction to Adjustment for Multiple Comparisons
,”
J. Thorac. Dis.
,
9
(
6
), pp.
1725
1729
.10.21037/jtd.2017.05.34
39.
R Core Team
,
2018
, “
R: A Language and Environment for Statistical Computing
,”
R Foundation for Statistical Computing
, Vienna, Austria, accessed Jan. 7, 2021, www.R-project.org/
40.
Wright
,
K.
,
2018
, “
Corrgram: Plot a Correlogram
,” accessed Jan. 8, 2021, https://cran.r-project.org/web/packages/corrgram/index.html
41.
Hastie
,
T.
, and
Hastie
,
M. T.
,
2018
, Package ‘gam’. GAM Package CRAN, accessed Jan. 15, 2020, https://cran.r-project.org/web/packages/gam/gam.pdf
42.
R Core Team,
2013
,
R: A Language and Environment for Statistical Computing
,
R Foundation for Statistical Computing
, Vienna, Austria.
43.
Raghavan
,
M. L.
,
Fillinger
,
M. F.
,
Marra
,
S. P.
,
Naegelein
,
B. P.
, and
Kennedy
,
F. E.
,
2005
, “
Automated Methodology for Determination of Stress Distribution in Human Abdominal Aortic Aneurysm
,”
ASME J. Biomech. Eng.
,
127
(
5
), pp.
868
871
.10.1115/1.1992530
44.
Polzer
,
S.
,
Gasser
,
T. C.
,
Vlachovsky
,
R.
,
Kubicek
,
L.
,
Lambert
,
L.
,
Man
,
V.
,
Novak
,
K.
,
Slazansky
,
M.
,
Bursa
,
J.
, and
Staffa
,
R.
,
2020
, “
Biomechanical Markers Are More Sensitive Than Diameter in Predicting Rupture of Asymptomatic Abdominal Aortic Aneurysms
,”
J. Vasc. Surg.
,
71
(
2
), pp.
617
626
.10.1016/j.jvs.2019.03.051
45.
Elger
,
D. F.
,
Blackketter
,
D. M.
,
Budwig
,
R. S.
, and
Johansen
,
K. H.
,
1996
, “
The Influence of Shape on the Stresses in Model Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
118
(
3
), pp.
326
332
.10.1115/1.2796014
46.
Liljeqvist
,
M. L.
,
Hultgren
,
R.
,
Gasser
,
T. C.
, and
Roy
,
J.
,
2016
, “
Volume Growth of Abdominal Aortic Aneurysms Correlates With Baseline Volume and Increasing Finite Element Analysis-Derived Rupture Risk
,”
J. Vasc. Surg.
,
63
(
6
), pp.
1434
1442
.10.1016/j.jvs.2015.11.051
47.
Canchi
,
T.
,
Patnaik
,
S. S.
,
Nguyen
,
H. N.
,
Ng
,
E. K. Y.
,
Narayanan
,
S.
,
Muluk
,
S. C.
,
De Oliveira
,
V.
, and
Finol
,
E. A.
,
2020
, “
A Comparative Study of Biomechanical and Geometrical Attributes of Abdominal Aortic Aneurysms in the Asian and Caucasian Populations
,”
ASME J. Biomech. Eng.
,
142
(
6
), p. 061003.10.1115/1.4045268
48.
Paliwal
,
M.
, and
Kumar
,
U. A.
,
2009
, “
Neural Networks and Statistical Techniques: A Review of Applications
,”
Expert Syst. Appl.
,
36
(
1
), pp.
2
17
.10.1016/j.eswa.2007.10.005
49.
Hollingsworth
,
A. C.
,
Dawkins
,
C.
,
Wong
,
P. F.
,
Walker
,
P.
,
Milburn
,
S.
, and
Mofidi
,
R.
,
2019
, “
Aneurysm Morphology is a More Significant Predictor of Survival Than Hardman's Index in Patients With Ruptured or Acutely Symptomatic Abdominal Aortic Aneurysms
,”
Ann. Vasc. Surg.
,
58
, pp.
222
231
.10.1016/j.avsg.2018.10.018
50.
Khan
,
J. A.
,
Abdul Rahman
,
M. N.
,
Mazari
,
F. A.
,
Shahin
,
Y.
,
Smith
,
G.
,
Madden
,
L.
,
Fagan
,
M. J.
,
Greenman
,
J.
,
McCollum
,
P. T.
, and
Chetter
,
I. C.
,
2012
, “
Intraluminal Thrombus Has a Selective Influence on Matrix Metalloproteinases and Their Inhibitors (Tissue Inhibitors of Matrix Metalloproteinases) in the Wall of Abdominal Aortic Aneurysms
,”
Ann. Vasc. Surg.
,
26
(
3
), pp.
322
329
.10.1016/j.avsg.2011.08.015
51.
Koole
,
D.
,
Zandvoort
,
H. J.
,
Schoneveld
,
A.
,
Vink
,
A.
,
Vos
,
J. A.
,
van den Hoogen
,
L. L.
,
de Vries
,
J. P.
,
Pasterkamp
,
G.
,
Moll
,
F. L.
, and
van Herwaarden
,
J. A.
,
2013
, “
Intraluminal Abdominal Aortic Aneurysm Thrombus is Associated With Disruption of Wall Integrity
,”
J. Vasc. Surg.
,
57
(
1
), pp.
77
83
.10.1016/j.jvs.2012.07.003
52.
Piechota-Polanczyk
,
A.
,
Jozkowicz
,
A.
,
Nowak
,
W.
,
Eilenberg
,
W.
,
Neumayer
,
C.
,
Malinski
,
T.
,
Huk
,
I.
, and
Brostjan
,
C.
,
2015
, “
The Abdominal Aortic Aneurysm and Intraluminal Thrombus: Current Concepts of Development and Treatment
,”
Front. Cardiovasc. Med.
,
2
, p.
19
.10.3389/fcvm.2015.00019
53.
Thubrikar
,
M. J.
,
Robicsek
,
F.
,
Labrosse
,
M.
,
Chervenkoff
,
V.
, and
Fowler
,
B. L.
,
2003
, “
Effect of Thrombus on Abdominal Aortic Aneurysm Wall Dilation and Stress
,”
J. Cardiovasc. Surg. (Torino)
,
44
(
1
), pp.
67
77
.https://www.minervamedica.it/en/journals/cardiovascular-surgery/article.php?cod=R37Y2003N01A0067
54.
Haller
,
S. J.
,
Crawford
,
J. D.
,
Courchaine
,
K. M.
,
Bohannan
,
C. J.
,
Landry
,
G. J.
,
Moneta
,
G. L.
,
Azarbal
,
A. F.
, and
Rugonyi
,
S.
,
2018
, “
Intraluminal Thrombus is Associated With Early Rupture of Abdominal Aortic Aneurysm
,”
J. Vasc. Surg.
,
67
(
4
), pp.
1051
1058.e1051
.10.1016/j.jvs.2017.08.069
55.
Meyer
,
C. A.
,
Guivier-Curien
,
C.
, and
Moore
, and
J. E.
, Jr.
,
2010
, “
Trans-Thrombus Blood Pressure Effects in Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
132
(
7
), p.
071005
.10.1115/1.4001253
56.
Erhart
,
P.
,
Lindquist Liljeqvist
,
M.
,
Roy
,
J.
,
Gasser
,
T. C.
, and
Böckler
,
D.
,
2019
, “
Does Finite Element Analysis Enable us to Predict Rupture? The Benefits and Limitations of Finite Element Analysis in Patients With Abdominal Aortic Aneurysms
,”
Endovasc. Today
, 18(3), pp.
74
78
.https://evtoday.com/pdfs/et0319_F5_Erhart.pdf
57.
Miller
,
K.
,
Mufty
,
H.
,
Catlin
,
A.
,
Rogers
,
C.
,
Saunders
,
B.
,
Sciarrone
,
R.
,
Fourneau
,
I.
,
Meuris
,
B.
,
Tavner
,
A.
, and
Joldes
,
G. R.
,
2019
, “
Wall Stress Distributions in Abdominal Aortic Aneurysms Do Not Correlate With Symptoms
,” arXiv Preprint arXiv:1904.07393.https://arxiv.org/ftp/arxiv/papers/1904/1904.07393.pdf
58.
Tu
,
J. V.
,
1996
, “
Advantages and Disadvantages of Using Artificial Neural Networks Versus Logistic Regression for Predicting Medical Outcomes
,”
J. Clin. Epidemiol.
,
49
(
11
), pp.
1225
1231
.10.1016/S0895-4356(96)00002-9
You do not currently have access to this content.