Abstract

The relink trainer (RLT) is a novel end-effector device designed for gait-retraining poststroke. The user's foot is constrained to a specific kinematic trajectory relative to the trainer, while the hip and knee are unconstrained. As the RLT only fixes the footplate trajectory, the expected constraint on the hip and knee angles will be subject-specific due to individual lower limb geometries. This study had two objectives (1) to calculate the subject-specific theoretical joint angle trajectories, the RLT should constrain the hip and knee angle to using computer simulation, assuming a fixed hip position relative to the RLT, and (2) experimentally determine the actual hip and knee joint angle trajectories of healthy users walking in the RLT, and compare them to the theoretical joint angle trajectories. The root-mean-square (RMS) error between joint trajectories obtained from motion capture and simulation ranged from 4.31 deg to 20.51 deg for the hip and between 4.48 deg and 22.58 deg for the knee, suggestive of moderate to poor accuracy and distinct kinematic adaptation strategies when using the RLT. A linear fit method (LFM) was used to determine the similarity between the obtained and simulated joint angle trajectories. LFM results would suggest that users' hip and knee joint angles follow the simulated joint angle trajectories when walking in the RLT; however, the actual joint angle trajectories are offset from the simulation trajectories. Post hoc analyses suggest hip motion when using the RLT influences the hip and knee angle trajectory differences for participants.

References

1.
Mehrholz
,
J.
, and
Pohl
,
M.
,
2012
, “
Electromechanical-Assisted Gait Training After Stroke: A Systematic Review Comparing End-Effector and Exoskeleton Devices
,”
J. Rehabil. Med.
,
44
(
3
), pp.
193
199
.10.2340/16501977-0943
2.
Mehrholz
,
J.
,
Thomas
,
S.
,
Werner
,
C.
,
Kugler
,
J.
,
Pohl
,
M.
, and
Elsner
,
B.
,
2017
, “
Electromechanical‐Assisted Training for Walking After Stroke: An Update on the Major Evidence
,”
Stroke
,
48
(
8
), p.
CD006185
.10.1161/STROKEAHA.117.018018
3.
Ward
,
S.
,
Wiedemann
,
L.
,
Stinear
,
C.
,
Stinear
,
J.
, and
McDaid
,
A.
,
2017
, “
The Influence of the Re-Link Trainer on Gait Symmetry in Healthy Adults
,”
IEEE International Conference on Rehabilitation and Robotics
, London, UK, July 17–20, pp.
276
282
.10.1109/ICORR.2017.8009259
4.
Ward
,
S. H.
,
Wiedemann
,
L.
,
Stinear
,
J.
,
Stinear
,
C.
, and
McDaid
,
A.
,
2018
, “
The Effect of a Novel Gait Retraining Device on Lower Limb Kinematics and Muscle Activation in Healthy Adults
,”
J. Biomech.
,
77
, pp.
183
189
.10.1016/j.jbiomech.2018.07.012
5.
Askim
,
T.
,
Bernhardt
,
J.
,
Løge
,
A. D.
, and
Indredavik
,
B.
,
2012
, “
Stroke Patients Do Not Need to Be Inactive in the First Two-Weeks After Stroke: Results From a Stroke Unit Focused on Early Rehabilitation
,”
Int. J. Stroke
,
7
(
1
), pp.
25
31
.10.1111/j.1747-4949.2011.00697.x
6.
Cumming
,
T. B.
,
Thrift
,
A. G.
,
Collier
,
J. M.
,
Churilov
,
L.
,
Dewey
,
H. M.
,
Donnan
,
G. A.
, and
Bernhardt
,
J.
,
2011
, “
Very Early Mobilization After Stroke Fast-Tracks Return to Walking: Further Results Rrom the Phase II AVERT Randomized Controlled Trial
,”
Stroke
,
42
(
1
), pp.
153
158
.10.1161/STROKEAHA.110.594598
7.
Lang
,
C. E.
,
Lohse
,
K. R.
, and
Birkenmeier
,
R. L.
,
2015
, “
Dose and Timing in Neurorehabilitation: Prescribing Motor Therapy After Stroke
,”
Curr. Opin. Neurol.
,
28
(
6
), pp.
549
555
.10.1097/WCO.0000000000000256
8.
Kora
,
K.
,
Stinear
,
J.
, and
McDaid
,
A.
,
2016
, “
Design, Analysis, and Optimization of an Acute Stroke Gait Rehabilitation Device
,”
ASME J. Med. Devices
,
11
(
1
), p.
014503
.10.1115/1.4035127
9.
Balaban
,
B.
, and
Tok
,
F.
,
2014
, “
Gait Disturbances in Patients With Stroke
,”
PM R
,
6
(
7
), pp.
635
642
.10.1016/j.pmrj.2013.12.017
10.
Patterson
,
K. K.
,
Parafianowicz
,
I.
,
Danells
,
C. J.
,
Closson
,
V.
,
Verrier
,
M. C.
,
Staines
,
W. R.
,
Black
,
S. E.
, and
McIlroy
,
W. E.
,
2008
, “
Gait Asymmetry in Community-Ambulating Stroke Survivors
,”
Arch. Phys. Med. Rehabil.
,
89
(
2
), pp.
304
310
.10.1016/j.apmr.2007.08.142
11.
Schache
,
A. G.
,
Baker
,
R.
, and
Lamoreux
,
L. W.
,
2006
, “
Defining the Knee Joint Flexion-Extension Axis for Purposes of Quantitative Gait Analysis: An Evaluation of Methods
,”
Gait Posture
,
24
(
1
), pp.
100
109
.10.1016/j.gaitpost.2005.08.002
12.
Iosa
,
M.
,
Cereatti
,
A.
,
Merlo
,
A.
,
Campanini
,
I.
,
Paolucci
,
S.
, and
Cappozzo
,
A.
,
2014
, “
Assessment of Waveform Similarity in Clinical Gait Data: The Linear Fit Method
,”
BioMed Res. Int.
,
2014
, p.
214156
.10.1155/2014/214156
13.
Mukaka
,
M. M.
,
2012
, “
Statistics Corner: A Guide to Appropriate Use of Correlation Coefficient in Medical Research
,”
Malawi Med. J.
,
24
(
3
), pp.
69
71
.https://pubmed.ncbi.nlm.nih.gov/23638278/
14.
Fischer
,
K.
,
Rohr
,
E.
,
Hamill
,
J.
,
Willwacher
,
S.
, and
Brueggemann
,
P.
,
2013
, “
Neuromuscular Response to Perturbation of the Habitual Joint Motion Path in Running
,”
Footwear Sci.
,
5
(
Sup. 1
), pp.
S135
S136
.10.1080/19424280.2013.799604
You do not currently have access to this content.