Abstract

Yttrium-90 (90Y) radioembolization is a minimally invasive procedure increasingly used for advanced liver cancer treatment. In this method, radioactive microspheres are injected into the hepatic arterial bloodstream to target, irradiate, and kill cancer cells. Accurate and precise treatment planning can lead to more efficient and safer treatment by delivering a higher radiation dose to the tumor while minimizing the exposure of the surrounding liver parenchyma. Treatment planning primarily relies on the estimated radiation dose delivered to tissue. However, current methods used to estimate the dose are based on simplified assumptions that make the dosimetry results unreliable. In this work, we present a computational model to predict the radiation dose from the 90Y activity in different liver segments to provide a more realistic and personalized dosimetry. Computational fluid dynamics (CFD) simulations were performed in a 3D hepatic arterial tree model segmented from cone-beam CT angiographic data obtained from a patient with hepatocellular carcinoma (HCC). The microsphere trajectories were predicted from the velocity field. 90Y dose distribution was then calculated from the volumetric distribution of the microspheres. Two injection locations were considered for the microsphere administration, a lobar and a selective injection. Results showed that 22% and 82% of the microspheres were delivered to the tumor, after each injection, respectively, and the combination of both injections ultimately delivered 49% of the total administered 90Y microspheres to the tumor. Results also illustrated the nonhomogeneous distribution of microspheres between liver segments, indicating the importance of developing patient-specific dosimetry methods for effective radioembolization treatment.

References

1.
Alazawi
,
W.
,
Cunningham
,
M.
,
Dearden
,
J.
, and
Foster
,
G. R.
,
2010
, “
Systematic Review: Outcome of Compensated Cirrhosis Due to Chronic Hepatitis C Infection
,”
Aliment. Pharmacol. Ther.
,
32
(
3
), pp.
344
355
.10.1111/j.1365-2036.2010.04370.x
2.
Llovet
,
J. M.
,
Zucman-Rossi
,
J.
,
Pikarsky
,
E.
,
Sangro
,
B.
,
Schwartz
,
M.
,
Sherman
,
M.
, and
Gores
,
G.
,
2016
, “
Hepatocellular Carcinoma
,”
Nat. Rev. Dis. Prim.
,
2
(
10127
), p.
16018
.10.1038/nrdp.2016.18
3.
Centers for Disease Control and Prevention
,
2018
, “Centers for Disease Control and Prevention. Liver and Intrahepatic Bile Duct Cancer, United States—2006–2015,”
Centers for Disease Control and Prevention
,
Atlanta, GA
, No. 5.
4.
Salem
,
R.
,
Lewandowski
,
R. J.
,
Gates
,
V. L.
,
Nutting
,
C. W.
,
Murthy
,
R.
,
Rose
,
S. C.
,
Soulen
,
M. C.
,
Geschwind
,
J.-F. H.
,
Kulik
,
L.
,
Kim
,
Y. H.
,
Spreafico
,
C.
,
Maccauro
,
M.
,
Bester
,
L.
,
Brown
,
D. B.
,
Ryu
,
R. K. W.
,
Sze
,
D. Y.
,
Rilling
,
W. S.
,
Sato
,
K. T.
,
Sangro
,
B.
,
Bilbao
,
J. I.
,
Jakobs
,
T. F.
,
Ezziddin
,
S.
,
Kulkarni
,
S.
,
Kulkarni
,
A.
,
Liu
,
D. M.
,
Valenti
,
D.
,
Hilgard
,
P.
,
Antoch
,
G.
,
Muller
,
S. P.
,
Alsuhaibani
,
H.
,
Mulcahy
,
M. F.
,
Burrel
,
M.
,
Real
,
M. I.
,
Spies
,
S.
,
Esmail
,
A. A.
,
Raoul
,
J.-L.
,
Garin
,
E.
,
Johnson
,
M. S.
,
Benson
,
A. B.
,
Sharma
,
R. A.
,
Wasan
,
H.
,
Lambert
,
B.
,
Memon
,
K.
,
Kennedy
,
A. S.
, and
Riaz
,
A.
,
2011
, “
Research Reporting Standards for Radioembolization of Hepatic Malignancies
,”
J. Vasc. Interv. Radiol.
,
22
(
3
), pp.
265
278
.10.1016/j.jvir.2010.10.029
5.
Breedis
,
C.
, and
Young
,
G.
,
1954
, “
The Blood Supply of Neoplasms in the Liver
,”
Am. J. Pathol.
,
30
(
5
), pp.
969
977
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1942491/
6.
Kennedy
,
A. S.
,
Kleinstreuer
,
C.
,
Basciano
,
C. A.
, and
Dezarn
,
W. A.
,
2010
, “
Computer Modeling of Yttrium-90-Microsphere Transport in the Hepatic Arterial Tree to Improve Clinical Outcomes
,”
Int. J. Radiat. Oncol. Biol. Phys.
,
76
(
2
), pp.
631
637
.10.1016/j.ijrobp.2009.06.069
7.
Gulec
,
S. A.
,
Mesoloras
,
G.
, and
Stabin
,
M.
,
2006
, “
Dosimetric Techniques in 90Y-Microsphere Therapy of Liver Cancer: The MIRD Equations for Dose Calculations
,”
J. Nucl. Med.
,
47
(
7
), pp.
1209
1211
.http://jnm.snmjournals.org/content/47/7/1209.short
8.
BSA Model Sirtex Medical
,
2016
,
Medical Training Manual: Training Program Physicians and Institutions
,
Sirtex Medical, Lane Cove
,
New South Wales, Australia
.
9.
Koops
,
A.
,
Wojciechowski
,
B.
,
Broering
,
D. C.
,
Adam
,
G.
, and
Krupski-Berdien
,
G.
,
2004
, “
Anatomic Variations of the Hepatic Arteries in 604 Selective Celiac and Superior Mesenteric Angiographies
,”
Surg. Radiol. Anat.
,
26
(
3
), pp.
239
244
.10.1007/s00276-004-0229-z
10.
Högberg
,
J.
,
Rizell
,
M.
,
Hultborn
,
R.
,
Svensson
,
J.
,
Henrikson
,
O.
,
Mölne
,
J.
,
Gjertsson
,
P.
, and
Bernhardt
,
P.
,
2015
, “
Increased Absorbed Liver Dose in Selective Internal Radiation Therapy (SIRT) Correlates With Increased Sphere-Cluster Frequency and Absorbed Dose Inhomogeneity
,”
EJNMMI Phys.
,
2
(
1
), p.
10
.10.1186/s40658-015-0113-4
11.
Kao
,
Y. H.
,
Tan
,
E. H.
,
Ng
,
C. E.
, and
Goh
,
S. W.
,
2011
, “
Clinical Implications of the Body Surface Area Method Versus Partition Model Dosimetry for Yttrium-90 Radioembolization Using Resin Microspheres: A Technical Review
,”
Ann. Nucl. Med.
,
25
(
7
), pp.
455
461
.10.1007/s12149-011-0499-6
12.
Roncali
,
E.
,
Taebi
,
A.
,
Foster
,
C.
, and
Vu
,
C. T.
,
2020
, “
Personalized Dosimetry for Liver Cancer Y-90 Radioembolization Using Computational Fluid Dynamics and Monte Carlo Simulation
,”
Ann. Biomed. Eng.
,
48
(
5
), pp.
1499
1510
.10.1007/s10439-020-02469-1
13.
Kleinstreuer
,
C.
,
2006
,
Biofluid Dynamics, Principles and Selected Applications
,
Taylor & Francis Group
, Boca Raton, FL. 
14.
Kleinstreuer
,
C.
,
Zhang
,
Z.
, and
Donohue
,
J. F.
,
2008
, “
Targeted Drug-Aerosol Delivery in the Human Respiratory System
,”
Annu. Rev. Biomed. Eng.
,
10
(
1
), pp.
195
220
.10.1146/annurev.bioeng.10.061807.160544
15.
Basciano
,
C. A.
,
Kleinstreuer
,
C.
,
Kennedy
,
A. S.
,
Dezarn
,
W. A.
, and
Childress
,
E.
,
2010
, “
Computer Modeling of Controlled Microsphere Release and Targeting in a Representative Hepatic Artery System
,”
Ann. Biomed. Eng.
,
38
(
5
), pp.
1862
1879
.10.1007/s10439-010-9955-z
16.
Basciano
,
C. A.
,
Kleinstreuer
,
C.
, and
Kennedy
,
A. S.
,
2011
, “
Computational Fluid Dynamics Modeling of 90Y Microspheres in Human Hepatic Tumors
,”
J. Nucl. Med. Radiat. Ther.
,
2
(
112
), p.
1
.10.4172/2155-9619.1000112
17.
Childress
,
E. M.
,
Kleinstreuer
,
C.
, and
Kennedy
,
A. S.
,
2012
, “
A New Catheter for Tumor-Targeting With Radioactive Microspheres in Representative Hepatic Artery Systems—Part II: Solid Tumor-Targeting in a Patient-Inspired Hepatic Artery System
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051005
.10.1115/1.4006685
18.
Childress
,
E. M.
, and
Kleinstreuer
,
C.
,
2013
, “
Computationally Efficient Particle Release Map Determination for Direct Tumor-Targeting in a Representative Hepatic Artery System
,”
ASME J. Biomech. Eng.
,
136
(
1
), p.
011012
.10.1115/1.4025881
19.
Aramburu
,
J.
,
Anton
,
R.
,
Rivas
,
A.
,
Ramos
,
J. C.
,
Sangro
,
B.
, and
Bilbao
,
J. I.
,
2018
, “
Liver Radioembolization: An Analysis of Parameters That Influence the Catheter-Based Particle-Delivery Via CFD
,”
Curr. Med. Chem.
,
25
, pp.
1
15
.10.2174/0929867325666180622145647
20.
Debbaut
,
C.
,
Monbaliu
,
D.
,
Casteleyn
,
C.
,
Cornillie
,
P.
,
Van Loo
,
D.
,
Masschaele
,
B.
,
Pirenne
,
J.
,
Simoens
,
P.
,
Van Hoorebeke
,
L.
, and
Segers
,
P.
,
2011
, “
From Vascular Corrosion Cast to Electrical Analog Model for the Study of Human Liver Hemodynamics and Perfusion
,”
IEEE Trans. Biomed. Eng.
,
58
(
1
), pp.
25
35
.10.1109/TBME.2010.2065229
21.
Wang
,
T.
,
Liang
,
F.
,
Zhou
,
Z.
, and
Shi
,
L.
,
2017
, “
A Computational Model of the Hepatic Circulation Applied to Analyze the Sensitivity of Hepatic Venous Pressure Gradient (HVPG) in Liver Cirrhosis
,”
J. Biomech.
,
65
, pp.
23
31
.10.1016/j.jbiomech.2017.09.023
22.
Aramburu
,
J.
,
Antón
,
R.
,
Rivas
,
A.
,
Ramos
,
J. C.
,
Larraona
,
G. S.
,
Sangro
,
B.
, and
Bilbao
,
J. I.
,
2018
, “
Numerical Zero-Dimensional Hepatic Artery Hemodynamics Model for Balloon-Occluded Transarterial Chemoembolization
,”
Int. J. Numer. Method Biomed. Eng.
,
34
(
7
), pp.
1
15
.10.1002/cnm.2983
23.
Aramburu
,
J.
,
Antón
,
R.
,
Bernal
,
N.
,
Rivas
,
A.
,
Ramos
,
J. C.
,
Sangro
,
B.
, and
Bilbao
,
J. I.
,
2015
, “
Physiological Outflow Boundary Conditions Methodology for Small Arteries With Multiple Outlets: A Patient-Specific Hepatic Artery Haemodynamics Case Study
,”
Proc. Inst. Mech. Eng. Part H
,
229
(
4
), pp.
291
306
.10.1177/0954411915578549
24.
Aramburu
,
J.
,
Antón
,
R.
,
Rivas
,
A.
,
Ramos
,
J. C.
,
Sangro
,
B.
, and
Bilbao
,
J. I.
,
2016
, “
Liver Cancer Arterial Perfusion Modelling and CFD Boundary Conditions Methodology: A Case Study of the Haemodynamics of a Patient-Specific Hepatic Artery in Literature-Based Healthy and Tumour-Bearing Liver Scenarios
,”
Int. J. Numer. Method Biomed. Eng.
,
32
(
11
), p.
e02764
.10.1002/cnm.2764
25.
Couinaud
,
C.
,
1957
,
Le Foie. Études Anatomiques et Chirurgicales
,
Masson
,
Paris, France
.
26.
Taebi
,
A.
,
Roudsari
,
B.
,
Vu
,
C.
,
Cherry
,
S.
, and
Roncali
,
E.
,
2019
, “
Hepatic Arterial Tree Segmentation: Towards Patient-Specific Dosimetry for Liver Cancer Radioembolization
,”
J. Nucl. Med.
,
60
(
Suppl. 1
), p.
122
.http://jnm.snmjournals.org/content/60/supplement_1/122.short
27.
Celik
,
I. B.
,
Ghia
,
U.
,
Roache
,
P. J.
,
Freitas
,
C. J.
,
Coleman
,
H.
, and
Raad
,
P. E.
,
2008
, “
Procedure for Estimation and Reporting of Uncertainty Due to Discretization in CFD Applications
,”
ASME J. Fluids Eng.
,
130
(
7
), p.
078001
.10.1115/1.2960953
28.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
29.
Crookston
,
N. R.
,
Fung
,
G. S. K.
, and
Frey
,
E. C.
,
2019
, “
Development of a Customizable Hepatic Arterial Tree and Particle Transport Model for Use in Treatment Planning
,”
IEEE Trans. Radiat. Plasma Med. Sci.
,
3
(
1
), pp.
31
37
.10.1109/TRPMS.2018.2842463
30.
Simoncini
,
C.
,
Rolland
,
Y.
,
Morgenthaler
,
V.
,
Jurczuk
,
K.
,
Saint-Jalmes
,
H.
,
Eliat
,
P.-A.
,
Kretowski
,
M.
, and
Bezy-Wendling
,
J.
,
2017
, “
Blood Flow Simulation in Patient-Specific Segmented Hepatic Arterial Tree
,”
IRBM
,
38
(
3
), pp.
120
126
.10.1016/j.irbm.2017.04.001
31.
Hübner
,
G. H.
,
Steudel
,
N.
,
Kleber
,
G.
,
Behrmann
,
C.
,
Lotterer
,
E.
, and
Fleig
,
W. E.
,
2000
, “
Hepatic Arterial Blood Flow Velocities: Assessment by Transcutaneous and Intravascular Doppler Sonography
,”
J. Hepatol.
,
32
(
6
), pp.
893
899
.10.1016/S0168-8278(00)80093-8
32.
Carr
,
I. A.
,
Nemoto
,
N.
,
Schwartz
,
R. S.
, and
Shadden
,
S. C.
,
2013
, “
Size-Dependent Predilections of Cardiogenic Embolic Transport
,”
Am. J. Physiol. Circ. Physiol.
,
305
(
5
), pp.
H732
H739
.10.1152/ajpheart.00320.2013
33.
Brooks
,
A. N.
, and
Hughes
,
T. J. R.
,
1982
, “
Streamline Upwind/Petrov-Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier-Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.10.1016/0045-7825(82)90071-8
34.
Jansen
,
K. E.
,
Whiting
,
C. H.
, and
Hulbert
,
G. M.
,
2000
, “
A Generalized-α Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
305
319
.10.1016/S0045-7825(00)00203-6
35.
Kung
,
E. O.
,
Les
,
A. S.
,
Figueroa
,
C. A.
,
Medina
,
F.
,
Arcaute
,
K.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite Element Analysis of Blood Flow in Deformable Models
,”
Ann. Biomed. Eng.
,
39
(
7
), pp.
1947
1960
.10.1007/s10439-011-0284-7
36.
Kung
,
E. O.
,
Les
,
A. S.
,
Medina
,
F.
,
Wicker
,
R. B.
,
McConnell
,
M. V.
, and
Taylor
,
C. A.
,
2011
, “
In Vitro Validation of Finite-Element Model of AAA Hemodynamics Incorporating Realistic Outlet Boundary Conditions
,”
ASME J. Biomech. Eng.
,
133
(
4
), p.
041003
.10.1115/1.4003526
37.
Arzani
,
A.
,
Dyverfeldt
,
P.
,
Ebbers
,
T.
, and
Shadden
,
S. C.
,
2012
, “
In Vivo Validation of Numerical Prediction for Turbulence Intensity in an Aortic Coarctation
,”
Ann. Biomed. Eng.
,
40
(
4
), pp.
860
870
.10.1007/s10439-011-0447-6
38.
Wang
,
T.
,
Liang
,
F.
,
Zhou
,
Z.
, and
Qi
,
X.
,
2018
, “
Global Sensitivity Analysis of Hepatic Venous Pressure Gradient (HVPG) Measurement With a Stochastic Computational Model of the Hepatic Circulation
,”
Comput. Biol. Med.
,
97
(
800
), pp.
124
136
.10.1016/j.compbiomed.2018.04.017
39.
Martini
,
F.
,
Nath
,
J. L.
, and
Bartholomew
,
E. F.
,
2015
,
Fundamentals of Anatomy & Physiology
,
Pearson
,
New York
.
40.
Lan
,
H.
,
Updegrove
,
A.
,
Wilson
,
N. M.
,
Maher
,
G. D.
,
Shadden
,
S. C.
, and
Marsden
,
A. L.
,
2018
, “
A Re-Engineered Software Interface and Workflow for the Open-Source SimVascular Cardiovascular Modeling Package
,”
ASME J. Biomech. Eng.
,
140
(
2
), p.
024501
.10.1115/1.4038751
41.
Reneman
,
R. S.
, and
Hoeks
,
A. P. G.
,
2008
, “
Wall Shear Stress as Measured In Vivo: Consequences for the Design of the Arterial System
,”
Med. Biol. Eng. Comput.
,
46
(
5
), pp.
499
507
.10.1007/s11517-008-0330-2
42.
Dieudonne
,
A.
,
Hobbs
,
R. F.
,
Lebtahi
,
R.
,
Maurel
,
F.
,
Baechler
,
S.
,
Wahl
,
R. L.
,
Boubaker
,
A.
,
Le Guludec
,
D.
,
Sgouros
,
G.
, and
Gardin
,
I.
,
2013
, “
Study of the Impact of Tissue Density Heterogeneities on 3-Dimensional Abdominal Dosimetry: Comparison Between Dose Kernel Convolution and Direct Monte Carlo Methods
,”
J. Nucl. Med.
,
54
(
2
), pp.
236
243
.10.2967/jnumed.112.105825
43.
Sarrut
,
D.
,
Bardiès
,
M.
,
Boussion
,
N.
,
Freud
,
N.
,
Jan
,
S.
,
Létang
,
J.-M.
,
Loudos
,
G.
,
Maigne
,
L.
,
Marcatili
,
S.
,
Mauxion
,
T.
,
Papadimitroulas
,
P.
,
Perrot
,
Y.
,
Pietrzyk
,
U.
,
Robert
,
C.
,
Schaart
,
D. R.
,
Visvikis
,
D.
, and
Buvat
,
I.
,
2014
, “
A Review of the Use and Potential of the GATE Monte Carlo Simulation Code for Radiation Therapy and Dosimetry Applications
,”
Med. Phys.
,
41
(
6 Pt 1
), p.
064301
.10.1118/1.4871617
44.
Azad
,
M. K.
,
Mansy
,
H. A.
, and
Gamage
,
P. T.
,
2016
, “
Geometric Features of Pig Airways Using Computed Tomography
,”
Physiol. Rep.
,
4
(
20
), p.
e12995
.10.14814/phy2.12995
45.
Simoncini
,
C.
,
Jurczuk
,
K.
,
Reska
,
D.
,
Esneault
,
S.
,
Nunes
,
J. C.
,
Bellanger
,
J. J.
,
Saint-Jalmes
,
H.
,
Rolland
,
Y.
,
Eliat
,
P. A.
,
Bézy-Wendling
,
J.
, and
Kretowski
,
M.
,
2018
, “
Towards a Patient-Specific Hepatic Arterial Modeling for Microspheres Distribution Optimization in SIRT Protocol
,”
Med. Biol. Eng. Comput.
,
56
(
3
), pp.
515
529
.10.1007/s11517-017-1703-1
46.
Van den Hoven
,
A. F.
,
Lam
,
M. G. E. H.
,
Jernigan
,
S.
,
Van den Bosch
,
M. A. A. J.
, and
Buckner
,
G. D.
,
2015
, “
Innovation in Catheter Design for Intra-Arterial Liver Cancer Treatments Results in Favorable Particle-Fluid Dynamics
,”
J. Exp. Clin. Cancer Res.
,
34
(
1
), p.
74
.10.1186/s13046-015-0188-8
You do not currently have access to this content.