Abstract

Pelvic organ prolapse (POP) is a condition characterized by displacement of the vagina from its normal anatomical position leading to symptoms such as incontinence, physical discomfort, and poor self-image. Conservative treatment has shown limited success and surgical procedures, including the use of mesh, often lead to severe complications. To improve the current treatment methods for prolapse, the viscoelastic properties of vaginal tissue need to be characterized. We determined the biaxial stress relaxation response of vaginal tissue isolated from healthy pubertal gilts. Square specimens (n =20) with sides aligned along the longitudinal directions (LD) and circumferential direction (CD) of the vagina were biaxially displaced up to 5 N. The specimens were then kept at the displacements corresponding to 5 N for 20 min in both the LD and CD, and the corresponding strains were measured using digital image correlation (DIC). The stresses in the LD and CD were found to decrease by 49.91±5.81% and 46.22±5.54% after 20 min, respectively. The strain in the LD and CD increased slightly from 0.080 ± 0.054 to 0.091 ± 0.064 and 0.050 ± 0.039 to 0.058 ± 0.047, respectively, but these changes were not significant (p >0.01). By using the Peleg model, the initial decay rate and the asymptotic stress during stress relaxation were found to be significantly higher in the LD than in the CD (p0.001), suggesting higher stress relaxation in the LD. These findings may have implications for improving current surgical mesh, mechanical devices, and physical therapy used for prolapse treatment.

References

1.
Barber
,
M. D.
, and
Maher
,
C.
,
2013
, “
Epidemiology and Outcome Assessment of Pelvic Organ Prolapse
,”
Int. Urogynecology J.
,
24
(
11
), pp.
1783
1790
.10.1007/s00192-013-2169-9
2.
Jelovsek
,
J. E.
, and
Barber
,
M. D.
,
2006
, “
Women Seeking Treatment for Advanced Pelvic Organ Prolapse Have Decreased Body Image and Quality of Life
,”
Am. J. Obstet. Gynecol.
,
194
(
5
), pp.
1455
1461
.10.1016/j.ajog.2006.01.060
3.
Barber
,
M. D.
,
2005
, “
Symptoms and Outcome Measures of Pelvic Organ Prolapse
,”
Clin. Obstet. Gynecol.
,
48
(
3
), pp.
648
661
.10.1097/01.grf.0000170424.11993.73
4.
Swift
,
S.
,
Woodman
,
P.
,
O'Boyle
,
A.
,
Kahn
,
M.
,
Valley
,
M.
,
Bland
,
D.
,
Wang
,
W.
, and
Schaffer
,
J.
,
2005
, “
Pelvic Organ Support Study (POSST): The Distribution, Clinical Definition, and Epidemiologic Condition of Pelvic Organ Support Defects
,”
Am. J. Obstet. Gynecol.
,
192
(
3
), pp.
795
806
.10.1016/j.ajog.2004.10.602
5.
Subak
,
L. L.
,
Waetjen
,
L. E.
,
Van Den Eeden
,
S.
,
Thom
,
D. H.
,
Vittinghoff
,
E.
, and
Brown
,
J. S.
,
2001
, “
Cost of Pelvic Organ Prolapse Surgery in the United States
,”
Obstet. Gynecol.
,
98
(
4
), pp.
646
651
.10.1097/00006250-200110000-00021
6.
Olsen
,
A. L.
,
Smith
,
V. J.
,
Bergstrom
,
J. O.
,
Colling
,
J. C.
, and
Clark
,
A. L.
,
1997
, “
Epidemiology of Surgically Managed Pelvic Organ Prolapsed and Urinary Incontinence
,”
Obstet. Gynecol.
,
89
(
97
), pp.
501
506
.10.1016/S0029-7844(97)00058-6
7.
Hagen
,
S.
, and
Stark
,
D.
,
2011
, “
Conservative Prevention and Management of Pelvic Organ Prolapse in Women
,”
Cochrane Database Syst. Rev.
, (
12
), pp.
1
69
.
8.
FDA
,
2011
, “
Urogynecologic Surgical Mesh: Update on the Safety and Effectiveness of Transvaginal Placement for Pelvic Organ Prolapse
,” Food and Drug Administration, Report.
9.
Peña
,
E.
,
Calvo
,
B.
,
Martínez
,
M. A.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Jorge
,
R. M. N.
,
Ferreira
,
A.
, and
Doblaré
,
M.
,
2010
, “
Experimental Study and Constitutive Modeling of the Viscoelastic Mechanical Properties of the Human Prolapsed Vaginal Tissue
,”
Biomech. Model. Mechanobiol.
,
9
(
1
), pp.
35
44
.10.1007/s10237-009-0157-2
10.
Gilchrist
,
A. S.
,
Gupta
,
A.
,
Eberhart
,
R. C.
, and
Zimmern
,
P. E.
,
2010
, “
Do Biomechanical Properties of Anterior Vaginal Wall Prolapse Tissue Predict Outcome of Surgical Repair?
,”
J. Urol.
,
183
(
3
), pp.
1069
1073
.10.1016/j.juro.2009.11.025
11.
Jean-Charles
,
C.
,
Rubod
,
C.
,
Brieu
,
M.
,
Boukerrou
,
M.
,
Fasel
,
J.
, and
Cosson
,
M.
,
2010
, “
Biomechanical Properties of Prolapsed or Non-Prolapsed Vaginal Tissue: Impact on Genital Prolapse Surgery
,”
Int. Urogynecology J.
,
21
(
12
), pp.
1535
1538
.10.1007/s00192-010-1208-z
12.
Martins
,
P.
,
Peña
,
E.
,
Calvo
,
B.
,
Doblaré
,
M.
,
Mascarenhas
,
T.
,
Jorge
,
R. N.
, and
Ferreira
,
A.
,
2010
, “
Prediction of Nonlinear Elastic Behaviour of Vaginal Tissue: Experimental Results and Model Formulation
,”
Comput. Methods Biomech. Biomed. Eng.
,
13
(
3
), pp.
327
337
.10.1080/10255840903208197
13.
Peña
,
E.
,
Martins
,
P.
,
Mascarenhas
,
T.
,
Natal Jorge
,
R. M.
,
Ferreira
,
A.
,
Doblaré
,
M.
, and
Calvo
,
B.
,
2011
, “
Mechanical Characterization of the Softening Behavior of Human Vaginal Tissue
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
3
), pp.
275
283
.10.1016/j.jmbbm.2010.10.006
14.
Rubod
,
C.
,
Brieu
,
M.
,
Cosson
,
M.
,
Rivaux
,
G.
,
Clay
,
J. C.
,
De Landsheere
,
L.
, and
Gabriel
,
B.
,
2012
, “
Biomechanical Properties of Human Pelvic Organs
,”
Urology
,
79
(
4
), pp.
17
968
.10.1016/j.urology.2011.11.010
15.
Chantereau
,
P.
,
Brieu
,
M.
,
Kammal
,
M.
,
Farthmann
,
J.
,
Gabriel
,
B.
, and
Cosson
,
M.
,
2014
, “
Mechanical Properties of Pelvic Soft Tissue of Young Women and Impact of Aging
,”
Int. Urogynecology J. Pelvic Floor Dysfun
,
25
(
11
), pp.
1547
1553
.10.1007/s00192-014-2439-1
16.
Rubod
,
C.
,
Boukerrou
,
M.
,
Brieu
,
M.
,
Dubois
,
P.
, and
Cosson
,
M.
,
2007
, “
Biomechanical Properties of Vaginal Tissue—Part 1: New Experimental Protocol
,”
J. Urol.
,
178
(
1
), pp.
320
325
.10.1016/j.juro.2007.03.040
17.
Feola
,
A.
,
Moalli
,
P.
,
Alperin
,
M.
,
Duerr
,
R.
,
Gandley
,
R. E.
, and
Abramowitch
,
S.
,
2011
, “
Impact of Pregnancy and Vaginal Delivery on the Passive and Active Mechanics of the Rat Vagina
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
549
558
.10.1007/s10439-010-0153-9
18.
Robison
,
K. M.
,
Conway
,
C. K.
,
Desrosiers
,
L.
,
Knoepp
,
L. R.
, and
Miller
,
K. S.
,
2017
, “
Biaxial Mechanical Assessment of the Murine Vaginal Wall Using Extension–Inflation Testing
,”
ASME J. Biomech. Eng.
,
139
(
10
), p.
104504
.10.1115/1.4037559
19.
Rynkevic
,
R.
,
Martins
,
P.
,
Hympanova
,
L.
,
Almeida
,
H.
,
Fernandes
,
A. A.
, and
Deprest
,
J.
,
2017
, “
Biomechanical and Morphological Properties of the Multiparous Ovine Vagina and Effect of Subsequent Pregnancy
,”
J. Biomech.
,
57
, pp.
94
102
.10.1016/j.jbiomech.2017.03.023
20.
Huntington
,
A.
,
Rizzuto
,
E.
,
Abramowitch
,
S.
,
Del Prete
,
Z.
, and
Vita
,
R. D.
,
2019
, “
Anisotropy of The? Passive and Active Rat Vagina Under Biaxial Loading
,”
Ann. Biomed. Eng.
,
47
(
1
), pp.
272
281
.10.1007/s10439-018-02117-9
21.
McGuire
,
J. A.
,
Abramowitch
,
S. D.
,
Maiti
,
S.
, and
Vita
,
R. D.
,
2019
, “
Swine Vagina Under Planar Biaxial Loads: An Investigation of Large Deformations and Tears
,”
ASME J. Biomech. Eng.
,
141
(
4
), p.
041003
.10.1115/1.4042437
22.
Baah-Dwomoh
,
A.
,
McGuire
,
J.
,
Tan
,
T.
, and
Vita
,
R. D.
,
2016
, “
Mechanical Properties of Female Reproductive Organs and Supporting Connective Tissues: A Review of the Current State of Knowledge
,”
ASME Appl. Mech. Rev.
,
68
(
6
), p.
060801
.10.1115/1.4034442
23.
Gruber
,
D. D.
,
Warner
,
W. B.
,
Lombardini
,
E. D.
,
Zahn
,
C. M.
, and
Buller
,
J. L.
,
2011
, “
Anatomical and Histological Examination of the Porcine Vagina and Supportive Structures: In Search of an Ideal Model for Pelvic Floor Disorder Evaluation and Management
,”
Female Pelvic Med. Reconstr. Surg.
,
17
(
3
), pp.
110
114
.10.1097/SPV.0b013e318214b1a6
24.
Lionello
,
G.
,
Sirieix
,
C.
, and
Baleani
,
M.
,
2014
, “
An Effective Procedure to Create a Speckle Pattern on Biological Soft Tissue for Digital Image Correlation Measurements
,”
J. Mech. Behav. Biomed. Mater.
,
39
, pp.
1
8
.10.1016/j.jmbbm.2014.07.007
25.
Peleg
,
M.
,
1979
, “
Characterization of the Stress Relaxation Curves of Solid Foods
,”
J. Food Sci.
,
44
(
1
), pp.
277
281
.10.1111/j.1365-2621.1979.tb10062.x
26.
Nagatomi
,
J.
,
Gloeckner
,
D. C.
,
Chancellor
,
M. B.
,
Degroat
,
W. C.
, and
Sacks
,
M. S.
,
2004
, “
Changes in the Biaxial Viscoelastic Response of the Urinary Bladder Following Spinal Cord Injury
,”
Ann. Biomed. Eng.
,
32
(
10
), pp.
1409
1419
.10.1114/B:ABME.0000042228.89106.48
27.
Nagatomi
,
J.
,
Toosi
,
K. K.
,
Chancellor
,
M. B.
, and
Sacks
,
M. S.
,
2008
, “
Contribution of the Extracellular Matrix to the Viscoelastic Behavior of the Urinary Bladder Wall
,”
Biomech. Model. Mechanobiol.
,
7
(
5
), pp.
395
404
.10.1007/s10237-007-0095-9
28.
Fung
,
Y.-C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer
, New York, NY.
29.
Stock
,
J. D.
,
Supakorn
,
C.
,
Hostetler
,
C.
, and
Stalder
,
K. J.
,
2017
, “
Prolapse Incidence in Swine Breeding Herds is a Cause for Concern
,”
Open J. Vet. Med.
,
7
(
8
), pp.
85
97
. 10.4236/ojvm.2017.78009
30.
MacLennan
,
A. H.
,
Taylor
,
A. W.
,
Wilson
,
D. H.
, and
Wilson
,
D.
,
2000
, “
The Prevalence of Pelvic Floor Disorders and Their Relationship to Gender, Age, Parity and Mode of Delivery
,”
BJOG
,
107
, pp. 1460–1470. http://sci-hub.tw/10.1111/j.1471-0528.2000.tb11669.x
31.
Boreham
,
M. K.
,
Wai
,
C. Y.
,
Miller
,
R. T.
,
Schaffer
,
J. I.
, and
Word
,
R. A.
,
2002
, “
Morphometric Analysis of Smooth Muscle in the Anterior Vaginal Wall of Women With Pelvic Organ Prolapse
,”
Am. J. Obstet. Gynecol.
,
187
(
1
), pp.
56
63
.10.1067/mob.2002.124843
32.
Takacs
,
P.
,
Gualtieri
,
M.
,
Nassiri
,
M.
,
Candiotti
,
K.
, and
Medina
,
C. A.
,
2008
, “
Vaginal Smooth Muscle Cell Apoptosis is Increased in Women With Pelvic Organ Prolapse
,”
Int. Urogynecology J.
,
19
(
11
), pp.
1559
1564
.10.1007/s00192-008-0690-z
33.
Davis
,
F. M.
, and
De Vita
,
R.
,
2012
, “
A Nonlinear Constitutive Model for Stress Relaxation in Ligaments and Tendons
,”
Ann. Biomed. Eng.
,
40
(
12
), pp.
2541
2550
.10.1007/s10439-012-0596-2
34.
Becker
,
W. R.
, and
De Vita
,
R.
,
2015
, “
Biaxial Mechanical Properties of Swine Uterosacral and Cardinal Ligaments
,”
Biomech. Model. Mechanobiol.
,
14
(
3
), pp.
549
560
.10.1007/s10237-014-0621-5
35.
Martins
,
P.
,
Lopes Silva-Filho
,
A.
,
Rodrigues Maciel da Fonseca
,
A. M.
,
Santos
,
A.
,
Santos
,
L.
,
Mascarenhas
,
T.
,
Natal Jorge
,
R. M.
, and
Ferreira
,
A. J.
,
2013
, “
Biomechanical Properties of Vaginal Tissue in Women With Pelvic Organ Prolapse
,”
Gynecol. Obstet. Invest.
,
75
(
2
), pp.
85
92
.10.1159/000343230
36.
Ulrich
,
D.
,
Edwards
,
S. L.
,
Letouzey
,
V.
,
Su
,
K.
,
White
,
J. F.
,
Rosamilia
,
A.
,
Gargett
,
C. E.
, and
Werkmeister
,
J. A.
,
2014
, “
Regional Variation in Tissue Composition and Biomechanical Properties of Postmenopausal Ovine and Human Vagina
,”
PLoS One
,
9
(
8
), p.
e104972
.10.1371/journal.pone.0104972
37.
Liang
,
R.
,
Knight
,
K.
,
Abramowitch
,
S.
, and
Moalli
,
P. A.
,
2016
, “
Exploring the Basic Science of Prolapse Meshes
,”
Curr. Opin. Obstet. Gynecol.
,
28
(
5
), p.
413
.10.1097/GCO.0000000000000313
You do not currently have access to this content.