Abstract

Swine are a commonly used model in translational pulmonary research. However, in vivo airway morphometry during respiration has not been studied in extensive detail using modern imaging tools. Chest computed tomographic was performed in swine (n = 3) at multiple stages of respiration. Morphometric parameters of each airway segment at end-expiration and end-inspiration were compared as well as among matched anatomical regions (proximal and distal; ventral, lateral, and dorsal). Analysis included segment diameter, length, ellipticity, and the bifurcation angle between daughter branches. Deformation of the airway during respiration was qualitatively visualized using a point-to-point deformation map. Comparison of airway generation showed airway diameter and length were larger at end-inspiration in the fourth and seventh generations compared to end-expiration. Bifurcation angle was larger at end-inspiration compared to end-expiration. Analysis by anatomical region showed that length and bifurcation angle were larger at inspiration in the distal airway regions only. Regardless of respiratory phase, the lateral regions had larger diameters and lengths compared to the ventral and dorsal regions at similar generations and proximal regions had larger bifurcation angles. The findings that morphological changes were more prevalent in distal airways during respiration was confirmed by analysis of a deformation map. Compared to human airway models, the relative diameter may be smaller and length may be greater in swine in similar airway generations. This morphometric description of the swine airways during respiration may guide conduct of preclinical translational studies, revealing advantages and limitations of swine models for specific evaluations. Such morphometric parameters may directly determine the suitability of the swine model for the study of lung interventions, in terms of recapitulation of human morphometry dynamics.

References

1.
Judge
,
E. P.
,
Hughes
,
J. M. L.
,
Egan
,
J. J.
,
Maguire
,
M.
,
Molloy
,
E. L.
, and
O'Dea
,
S.
,
2014
, “
Anatomy and Bronchoscopy of the Porcine Lung. A Model for Translational Respiratory Medicine
,”
Am. J. Respir. Cell Mol. Biol.
,
51
(
3
), pp.
334
343
.10.1165/rcmb.2013-0453TR
2.
Swindle
,
M. M.
,
Makin
,
A.
,
Herron
,
A. J.
,
Clubb
,
F. J. J.
, and
Frazier
,
K. S.
,
2012
, “
Swine as Models in Biomedical Research and Toxicology Testing
,”
Vet. Pathol.
,
49
(
2
), pp.
344
356
.10.1177/0300985811402846
3.
Dondelinger
,
R. F.
,
Ghysels
,
M. P.
,
Brisbois
,
D.
,
Donkers
,
E.
,
Snaps
,
F. R.
,
Saunders
,
J.
, and
Devière
,
J.
,
1998
, “
Relevant Radiological Anatomy of the Pig as a Training Model in Interventional Radiology
,”
Eur. Radiol.
,
8
(
7
), pp.
1254
1273
.10.1007/s003300050545
4.
Parent
,
R. A.
, ed.,
2015
,
Comparative Biology of the Normal Lung
,
Academic Press
,
San Diego, CA
5.
Nakakuki
,
S.
,
1994
, “
Bronchial Tree, Lobular Division and Blood Vessels of the Pig Lung
,”
J. Vet. Med. Sci.
,
56
(
4
), pp.
685
689
.10.1292/jvms.56.685
6.
Bauer
,
C.
,
Adam
,
R.
,
Stoltz
,
D. A.
, and
Beichel
,
R. R.
,
2012
, “
Computer-Aided Analysis of Airway Trees in Micro-CT Scans of Ex Vivo Porcine Lung Tissue
,”
Comput. Med. Imaging Graph.
,
36
(
8
), pp.
601
609
.10.1016/j.compmedimag.2012.08.001
7.
Azad
,
M. K.
,
Mansy
,
H. A.
, and
Gamage
,
P. T.
,
2016
, “
Geometric Features of Pig Airways Using Computed Tomography
,”
Physiol. Rep.
,
4
(
20
), p.
e12995
.10.14814/phy2.12995
8.
Leira
,
H. O.
,
Tangen
,
G. A.
,
Hofstad
,
E. F.
,
Langø
,
T.
, and
Amundsen
,
T.
,
2012
, “
A Novel In Vivo Method for Lung Segment Movement Tracking
,”
Phys. Med. Biol.
,
57
(
4
), pp.
1071
1086
.10.1088/0031-9155/57/4/1071
9.
Gamage
,
P. P. T.
,
Khalili
,
F.
,
Khurshidul Azad
,
M. D.
, and
Mansy
,
H. A.
,
2018
, “
Modeling Inspiratory Flow in a Porcine Lung Airway
,”
ASME J. Biomech. Eng.
,
140
(
6
), p.
061003
.10.1115/1.4038431
10.
Perinel
,
S.
,
Pourchez
,
J.
,
Leclerc
,
L.
,
Avet
,
J.
,
Durand
,
M.
,
Prevot
,
N.
,
Cottier
,
M.
, and
Vergnon
,
J. M.
,
2017
, “
Development of an Ex Vivo Human-Porcine Respiratory Model for Preclinical Studies
,”
Sci. Rep.
,
7
, p.
43121
.10.1038/srep43121
11.
de Ruiter
,
Q.
,
Fontana
,
J.
,
Schampaert
,
S.
,
Radaelli
,
A.
,
van der Bom
,
I.
,
Browning
,
R.
,
Abi-Jaoudeh
,
N.
,
Xu
,
S.
,
Pritchard
,
W.
,
Karanian
,
J.
, and
Wood
,
B.
,
2018
, “
Translation of a Novel 3D Navigation Augmented Fluoroscopy Approach for Endobronchial Procedures Based on CBCT
,”
Chest
,
154
(
4
), pp.
1129A
1130A
.10.1016/j.chest.2018.08.1019
12.
Leira
,
H. O.
,
Amundsen
,
T.
,
Tangen
,
G. A.
,
,
L. E.
,
Manstad-Hulaas
,
F.
, and
Langø
,
T.
,
2011
, “
A Novel Research Platform for Electromagnetic Navigated Bronchoscopy Using Cone Beam CT Imaging and an Animal Model
,”
Minimum Invasive Ther. Allied Technol.
,
20
(
1
), pp.
30
41
.10.3109/13645706.2010.518747
13.
Au
,
J. T.
,
Carson
,
J.
,
Monette
,
S.
, and
Finley
,
D. J.
,
2012
, “
Spray Cryotherapy is Effective for Bronchoscopic, Endoscopic and Open Ablation of Thoracic Tissues
,”
Interact. Cardiovasc. Thorac. Surg.
,
15
(
4
), pp.
580
584
.10.1093/icvts/ivs192
14.
Franke
,
K.-J.
,
Theegarten
,
D.
,
Hann von Weyhern
,
C.
,
Nilius
,
G.
,
Brueckner
,
C.
,
Hetzel
,
J.
,
Hetzel
,
M.
,
Ruhle
,
K.-H.
,
Enderle
,
M. D.
, and
Szyrach
,
M. N. I.
,
2010
, “
Prospective Controlled Animal Study on Biopsy Sampling With New Flexible Cryoprobes Versus Forceps: Evaluation of Biopsy Size, Histological Quality and Bleeding Risk
,”
Respiration
,
80
(
2
), pp.
127
132
.10.1159/000287251
15.
Maina
,
J. N.
, and
Van Gils
,
P.
,
2001
, “
Morphometric Characterization of the Airway and Vascular Systems of the Lung of the Domestic Pig, Sus Scrofa: Comparison of the Airway, Arterial and Venous Systems
,”
Comp. Biochem. Physiol. A Mol. Integr. Physiol.
,
130
(
4
), pp.
781
798
.10.1016/S1095-6433(01)00411-1
16.
Williamson
,
J. P.
,
Armstrong
,
J. J.
,
McLaughlin
,
R. A.
,
Noble
,
P. B.
,
West
,
A. R.
,
Becker
,
S.
,
Curatolo
,
A.
,
Noffsinger
,
W. J.
,
Mitchell
,
H. W.
,
Phillips
,
M. J.
,
Sampson
,
D. D.
,
Hillman
,
D. R.
, and
Eastwood
,
P. R.
,
2010
, “
Measuring Airway Dimensions During Bronchoscopy Using Anatomical Optical Coherence Tomography
,”
Eur. Respir. J.
,
35
(
1
), pp.
34
41
.10.1183/09031936.00041809
17.
Horsfield
,
K.
,
1978
, “
Morphometry of Airways
,”
Handbook of Physiology
, Vol.
III
,
A. P.
Fishman
, ed.,
American Society
,
Bethesda, MD
, pp.
75
81
.
18.
Yeh
,
H.-C.
, and
Schum
,
G. M.
,
1980
, “
Models of Human Lung Airways and Their Application to Inhaled Particle Deposition
,”
Bull. Math. Biol.
,
42
(
3
), pp.
461
480
.10.1016/S0092-8240(80)80060-7
19.
Fredberg
,
J. J.
, and
Hoenig
,
A.
,
1978
, “
Mechanical Response of the Lungs at High Frequencies
,”
ASME J. Biomech. Eng.
,
100
(
2
), pp.
57
66
.10.1115/1.3426193
20.
Azad
,
M. K.
, and
Mansy
,
H. A.
,
2016
, “
Generation of Pig Airways Using Rules Developed From the Measurements of Physical Airways
,”
J. Bioeng. Biomed. Sci.
,
6
(
4
), p.
203
.10.4172/2155-9538.1000203
21.
Schlesinger
,
R. B.
, and
McFadden
,
L. A.
,
1981
, “
Comparative Morphometry of the Upper Bronchial Tree in Six Mammalian Species
,”
Anat. Rec.
,
199
(
1
), pp.
99
108
.10.1002/ar.1091990110
22.
Tawhai
,
M. H.
,
Hunter
,
P.
,
Tschirren
,
J.
,
Reinhardt
,
J.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2004
, “
CT-Based Geometry Analysis and Finite Element Models of the Human and Ovine Bronchial Tree
,”
J. Appl. Physiol.
,
97
(
6
), pp.
2310
2321
.10.1152/japplphysiol.00520.2004
23.
Cohen
,
B. S.
,
Sussman
,
R. G.
, and
Lippmann
,
M.
,
1993
, “
Factors Affecting Distribution of Airflow in a Human Tracheobronchial Cast
,”
Respir. Physiol.
,
93
(
3
), pp.
261
278
.10.1016/0034-5687(93)90073-J
24.
Noble
,
P. B.
,
McLaughlin
,
R. A.
,
West
,
A. R.
,
Becker
,
S.
,
Armstrong
,
J. J.
,
McFawn
,
P. K.
,
Eastwood
,
P. R.
,
Hillman
,
D. R.
,
Sampson
,
D. D.
, and
Mitchell
,
H. W.
,
2010
, “
Distribution of Airway Narrowing Responses Across Generations and at Branching Points, Assessed In Vitro by Anatomical Optical Coherence Tomography
,”
Respir. Res.
,
11
, p.
9
.10.1186/1465-9921-11-9
25.
Dominelli
,
P. B.
,
Ripoll
,
J. G.
,
Cross
,
T. J.
,
Baker
,
S. E.
,
Wiggins
,
C. C.
,
Welch
,
B. T.
, and
Joyner
,
M. J.
,
2018
, “
Sex Differences in Large Conducting Airway Anatomy
,”
J. Appl. Physiol.
,
125
(
3
), pp.
960
965
.10.1152/japplphysiol.00440.2018
You do not currently have access to this content.