The accumulation of low density lipoprotein (LDL) in the arterial intima is a critical step in the initiation and progression of atheromatous lesions. In this study we examine subject-specific LDL transport into the intima of carotid bifurcations in three human subjects using a three-pore model for LDL mass transfer. Subject-specific carotid artery computational models were derived using magnetic resonance imaging (MRI) to obtain the geometry and phase-contract MRI (PC-MRI) to acquire pulsatile inflow and outflow boundary conditions for each subject. The subjects were selected to represent a wide range of anatomical configurations and different stages of atherosclerotic development from mild to moderate intimal thickening. A fluid–solid interaction (FSI) model was implemented in the computational fluid dynamics (CFD) approach in order to consider the effects of a compliant vessel on wall shear stress (WSS). The WSS-dependent response of the endothelium to LDL mass transfer was modeled by multiple pathways to include the contributions of leaky junctions, normal junctions, and transcytosis to LDL solute and plasma volume flux from the lumen into the intima. Time averaged WSS (TAWSS) over the cardiac cycle was computed to represent the spatial WSS distribution, and wall thickness (WTH) was determined from black blood MRI (BBMRI) so as to visualize intimal thickening patterns in the bifurcations. The regions which are exposed to low TAWSS correspond to elevated WTH and higher mass and volume flux via the leaky junctions. In all subjects, the maximum LDL solute flux was observed to be immediately downstream of the stenosis, supporting observations that existing atherosclerotic lesions tend to progress in the downstream direction of the stenosis.

References

1.
Lusis
,
A. J.
,
2000
, “
Atherosclerosis
,”
Nature
,
407
(6801), pp.
233
241
.10.1038/35025203
2.
Glagov
,
S.
,
Weisenberg
,
E.
,
Zarins
,
C. K.
,
Stankunavicius
,
R.
, and
Kolettis
,
G. J.
,
1987
, “
Compensatory Enlargement of Human Atherosclerotic Coronary Arteries
,”
N. Engl. J. Med.
,
316
(
22
), pp.
1371
1375
.10.1056/NEJM198705283162204
3.
Finn
,
A. V.
,
Nakano
,
M.
,
Narula
,
J.
,
Kolodgie
,
F. D.
, and
Virmani
,
R.
,
2010
, “
Concept of Vulnerable/Unstable Plaque
,”
Arterioscler., Thromb., Vasc. Biol.
,
30
(
7
), pp.
1282
1292
.10.1161/ATVBAHA.108.179739
4.
Tabas
,
I.
,
Williams
,
K. J.
, and
Borén
,
J.
,
2007
, “
Subendothelial Lipoprotein Retention as the Initiating Process in Atherosclerosis: Update and Therapeutic Implications
,”
Circulation
,
116
(
16
), pp.
1832
1844
.10.1161/CIRCULATIONAHA.106.676890
5.
Tarbell
,
J. M.
,
2010
, “
Shear Stress and the Endothelial Transport Barrier
,”
Cardiovasc. Res.
,
87
(2), pp.
320
330
.
6.
Olgac
,
U.
,
Kurtcuoglu
,
V.
, and
Poulikakos
,
D.
,
2008
, “
Computational Modeling of Coupled Blood-Wall Mass Transport of LDL: Effects of Local Wall Shear Stress
,”
Am. J. Physiol. Heart Circ. Physiol.
,
294
(
2
), pp.
H909
H919
.10.1152/ajpheart.01082.2007
7.
Cancel
,
L. M.
,
Fitting
,
A.
, and
Tarbell
,
J. M.
,
2007
, “
In Vitro Study of LDL Transport Under Pressurized (Convective) Conditions
,”
Am. J. Physiol. Heart Circ. Physiol.
,
293
(
1
), pp.
H126
H132
.10.1152/ajpheart.01188.2006
8.
Kao
,
C. H.
,
Chen
,
J. K.
,
Kuo
,
J. S.
, and
Yang
,
V. C.
,
1995
, “
Visualization of the Transport Pathways of Low Density Lipoproteins Across the Endothelial Cells in the Branched Regions of Rat Arteries
,”
Atherosclerosis
,
116
(
1
), pp.
27
41
.10.1016/0021-9150(95)05519-3
9.
Cancel
,
L. M.
, and
Tarbell
,
J. M.
,
2010
, “
The Role of Apoptosis in LDL Transport Through Cultured Endothelial Cell Monolayers
,”
Atherosclerosis
,
208
(
2
), pp.
335
341
.10.1016/j.atherosclerosis.2009.07.051
10.
Cancel
,
L. M.
, and
Tarbell
,
J. M.
,
2011
, “
The Role of Mitosis in LDL Transport Through Cultured Endothelial Cell Monolayers
,”
Am. J. Physiol. Heart Circ. Physiol.
,
300
(
3
), pp.
H769
H776
.10.1152/ajpheart.00445.2010
11.
Ethier
,
C. R.
,
2002
, “
Computational Modeling of Mass Transfer and Links to Atherosclerosis
,”
Ann. Biomed. Eng.
,
30
(
4
), pp.
461
471
.10.1114/1.1468890
12.
Wada
,
S.
, and
Karino
,
T.
,
1999
, “
Theoretical Study on Flow-Dependent Concentration Polarization of Low Density Lipoproteins at the Luminal Surface of a Straight Artery
,”
Biorheology
,
36
(
3
), pp.
207
223
.
13.
Wada
,
S.
, and
Karino
,
T.
,
2002
, “
Theoretical Prediction of Low-Density Lipoproteins Concentration at the Luminal Surface of an Artery With a Multiple Bend
,”
Ann. Biomed. Eng.
,
30
(
6
), pp.
778
791
.10.1114/1.1495868
14.
Soulis
,
J. V.
,
Fytanidis
,
D. K.
,
Papaioannou
,
V. C.
,
Styliadis
,
H.
, and
Giannoglou
,
G. D.
,
2011
, “
Oscillating LDL Accumulation in Normal Human Aortic Arch—Shear Dependent Endothelium
,”
Hippokratia
,
15
(
1
), pp.
22
25
.
15.
Sun
,
N.
,
Wood
,
N. B.
,
Hughes
,
A. D.
,
Thom
,
S. A.
, and
Xu
,
X. Y.
,
2006
, “
Fluid-Wall Modelling of Mass Transfer in an Axisymmetric Stenosis: Effects of Shear-Dependent Transport Properties
,”
Ann. Biomed. Eng.
,
34
(
7
), pp.
1119
1128
.10.1007/s10439-006-9144-2
16.
Stangeby
,
D. K.
, and
Ethier
,
C. R.
,
2002
, “
Computational Analysis of Coupled Blood-Wall Arterial LDL Transport
,”
ASME J. Biomech. Eng.
,
124
(
1
), pp.
1
8
.10.1115/1.1427041
17.
Koshiba
,
N.
,
Ando
,
J.
,
Chen
,
X.
, and
Hisada
,
T.
,
2007
, “
Multiphysics Simulation of Blood Flow and LDL Transport in a Porohyperelastic Arterial Wall Model
,”
ASME J. Biomech. Eng.
,
129
(
3
), pp.
374
385
.10.1115/1.2720914
18.
Sun
,
N.
,
Wood
,
N. B.
,
Hughes
,
A. D.
,
Thom
,
S. A. M.
, and
Yun Xu
,
X.
,
2007
, “
Effects of Transmural Pressure and Wall Shear Stress on LDL Accumulation in the Arterial Wall: A Numerical Study Using a Multilayered Model
,”
Am. J. Physiol. Heart Circ. Physiol.
,
292
(
6
), pp.
H3148
H3157
.10.1152/ajpheart.01281.2006
19.
Prosi
,
M.
,
Zunino
,
P.
,
Perktold
,
K.
, and
Quarteroni
,
A.
,
2005
, “
Mathematical and Numerical Models for Transfer of Low-Density Lipoproteins Through the Arterial Walls: A New Methodology for the Model Set Up With Applications to the Study of Disturbed Lumenal Flow
,”
J. Biomech.
,
38
(
4
), pp.
903
917
.10.1016/j.jbiomech.2004.04.024
20.
Karimi
,
S.
,
Dadvar
,
M.
,
Modarress
,
H.
, and
Dabir
,
B.
,
2013
, “
A New Correlation for Inclusion of Leaky Junctions in Macroscopic Modeling of Atherosclerotic Lesion Initiation
,”
J. Theor. Biol.
,
329
(
9
), pp.
94
100
.10.1016/j.jtbi.2013.02.018
21.
Kenjereš
,
S.
, and
de Loor
,
A.
,
2014
, “
Modelling and Simulation of Low-Density Lipoprotein Transport Through Multi-Layered Wall of an Anatomically Realistic Carotid Artery Bifurcation
,”
J. R. Soc. Interface
,
11
(
91
), p.
20130941
.10.1098/rsif.2013.0941
22.
Ai
,
L.
, and
Vafai
,
K.
,
2006
, “
A Coupling Model for Macromolecule Transport in a Stenosed Arterial Wall
,”
Int. J. Heat Mass Transfer
,
49
(
9–10
), pp.
1568
1591
.10.1016/j.ijheatmasstransfer.2005.10.041
23.
Olgac
,
U.
,
Poulikakos
,
D.
,
Saur
,
S. C.
,
Alkadhi
,
H.
, and
Kurtcuoglu
,
V.
,
2009
, “
Patient-Specific Three-Dimensional Simulation of LDL Accumulation in a Human Left Coronary Artery in Its Healthy and Atherosclerotic States
,”
Am. J. Physiol. Heart Circ. Physiol.
,
296
(
6
), pp.
H1969
H1982
.10.1152/ajpheart.01182.2008
24.
Nilsson
,
B.
, and
Heyden
,
A.
,
2003
, “
A Fast Algorithm for Level Set-Like Active Contours
,”
Pattern Recogn. Lett.
,
24
(
9–10
), pp.
1331
1337
.10.1016/S0167-8655(02)00374-4
25.
Zhao
,
S. Z.
,
Xu
,
X. Y.
,
Hughes
,
A. D.
,
Thom
,
S. A.
,
Stanton
,
A. V.
,
Ariff
,
B.
, and
Long
,
Q.
,
2000
, “
Blood Flow and Vessel Mechanics in a Physiologically Realistic Model of a Human Carotid Arterial Bifurcation
,”
J. Biomech.
,
33
(
8
), pp.
975
984
.10.1016/S0021-9290(00)00043-9
26.
Donea
,
J.
,
Huerta
,
A.
,
Ponthot
,
J.-P.
, and
Rodriguez-Ferran
,
2004
, “
Arbitrary Lagrangian Eulerian Methods
,”
Encyclopedia of Computational Mechanics
, Vol.
1
,
Wiley
,
New York
.10.1002/0470091355.ecm009
27.
Causin
,
P.
,
Gerbeau
,
J. F.
, and
Nobile
,
F.
,
2005
, “
Added-Mass Effect in the Design of Partitioned Algorithms for Fluid-Structure Problems
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
42–44
), pp.
4506
4527
.10.1016/j.cma.2004.12.005
28.
Forster
,
C.
,
Wall
,
W. A.
, and
Ramm
,
E.
,
2007
, “
Artificial Added Mass Instabilities in Sequential Staggered Coupling of Nonlinear Structures and Incompressible Viscous Flows
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
7
), pp.
1278
1293
.10.1016/j.cma.2006.09.002
29.
Kim
,
S.
,
2011
, “
Influence of Biomechanical Force and Mass Transfer on the Progression of Atherosclerosis in Human Carotid Arteries
,” Ph.D thesis, Georgia Institute of Technology, Atlanta, GA.
30.
Chien
,
S.
,
2003
, “
Molecular and Mechanical Bases of Focal Lipid Accumulation in Arterial Wall
,”
Prog. Biophys. Mol. Biol.
,
83
(
2
), pp.
131
151
.10.1016/S0079-6107(03)00053-1
31.
Simon
,
B. R.
,
Kaufmann
,
M. V.
,
McAfee
,
M. A.
,
Baldwin
,
A. L.
, and
Wilson
,
L. M.
,
1998
, “
Identification and Determination of Material Properties for Porohyperelastic Analysis of Large Arteries
,”
ASME J. Biomech. Eng.
,
120
(
2
), pp.
188
194
.10.1115/1.2798301
32.
Dabagh
,
M.
,
Jalali
,
P.
, and
Tarbell
,
J. M.
,
2009
, “
The Transport of LDL Across the Deformable Arterial Wall: The Effect of Endothelial Cell Turnover and Intimal Deformation Under Hypertension
,”
Am. J. Physiol. Heart Circ. Physiol.
,
297
(
3
), pp.
H983
H996
.10.1152/ajpheart.00324.2009
33.
Prosi
,
M.
,
Zunino
,
P.
,
Perktold
,
K.
, and
Quarteroni
,
A.
,
2005
, “
Mathematical and Numerical Models for Transfer of Low-Density Lipoproteins Through the Arterial Walls: A New Methodology for the Model Set Up With Applications to the Study of Disturbed Lumenal Flow
,”
J. Biomech.
,
38
(
4
), pp.
903
917
.10.1016/j.jbiomech.2004.04.024
34.
Meyer
,
G.
,
Merval
,
R.
, and
Tedgui
,
A.
,
1996
, “
Effects of Pressure-Induced Stretch and Convection on Low-Density Lipoprotein and Albumin Uptake in the Rabbit Aortic Wall
,”
Circ. Res.
,
79
(
3
), pp.
532
540
.10.1161/01.RES.79.3.532
35.
Tedgui
,
A.
, and
Lever
,
M. J.
,
1984
, “
Filtration Through Damaged and Undamaged Rabbit Thoracic Aorta
,”
Am. J. Physiol. Heart Circ. Physiol.
,
247
(
5
), pp.
H784
H791
.
36.
Sakellarios
,
A. I.
,
Papafaklis
,
M. I.
,
Siogkas
,
P.
,
Athanasiou
,
L. S.
,
Exarchos
,
T. P.
,
Stefanou
,
K.
,
Bourantas
,
C. V.
,
Naka
,
K. K.
,
Michalis
,
L. K.
,
Parodi
,
O.
, and
Fotiadis
,
D. I.
,
2013
, “
Patient-Specific Computational Modeling of Subendothelial LDL Accumulation in a Stenosed Right Coronary Artery: Effect of Hemodynamic and Biological Factors
,”
Am. J. Physiol. Heart Circ. Physiol.
,
304
(
11
), pp.
H1455
H1470
.10.1152/ajpheart.00539.2012
37.
Ayyalasomayajula
,
A.
,
Vande Geest
,
J. P.
, and
Simon
,
B. R.
,
2010
, “
Porohyperelastic Finite Element Modeling of Abdominal Aortic Aneurysms
,”
ASME J. Biomech. Eng.
,
132
(
10
), p.
104502
.10.1115/1.4002370
You do not currently have access to this content.