“Controlled particle release and targeting” is a technique using particle release score map (PRSM) and transient particle release score map (TPRSM) via backtracking to determine optimal drug injection locations for achieving an enhanced target efficiency (TE). This paper investigates the possibility of targeting desired locations through an idealized but complex three-dimensional (3D) vascular tree geometry under realistic hemodynamic conditions by imposing a Poiseuille velocity profile and a Womersley velocity profile derived from cine phase contrast magnetic resonance imaging (MRI) data for steady and pulsatile simulations, respectively. The shear thinning non-Newtonian behavior of blood was accounted for by the Carreau–Yasuda model. One-way coupled Eulerian–Lagrangian particle tracking method was used to record individual drug particle trajectories. Particle size and density showed negligible influence on the particle fates. With the proposed optimal release scoring algorithm, multiple optimal release locations were determined under steady flow conditions, whereas there was one unique optimal release location under pulsatile flow conditions. The initial in silico results appear promising, showing on average 66% TE in the pulsatile simulations, warranting further studies to improve the mathematical model and experimental validation.

References

1.
Strebhardt
,
K.
, and
Ullrich
,
A.
,
2008
, “
Paul Ehrlich's Magic Bullet Concept: 100 Years of Progress
,”
Nat. Rev. Cancer
,
8
(
6
), pp.
473
480
.10.1038/nrc2394
2.
Bae
,
Y. H.
, and
Park
,
K.
,
2011
, “
Targeted Drug Delivery to Tumors: Myths, Reality and Possibility
,”
J. Controlled Release
,
153
(
3
), pp.
198
205
.10.1016/j.jconrel.2011.06.001
3.
Jain
,
R. K.
,
1987
, “
Transport of Molecules Across Tumor Vasculature
,”
Cancer Metastasis Rev.
,
6
(
4
), pp.
559
593
.10.1007/BF00047468
4.
Palmer
,
T. N.
,
Caldecourt
,
M. A.
, and
Kingaby
,
R. O.
,
1984
, “
Liposomal Drug Delivery in Chronic Ischaemia
,”
Biochem. Soc. Trans.
,
12
(
2
), pp.
344
345
.
5.
Torchilin
,
V. P.
,
2000
, “
Drug Targeting
,”
Eur. J. Pharm. Sci.
,
11
(
Supplement 2
), pp.
S81
S91
.10.1016/S0928-0987(00)00166-4
6.
Wamsley
,
A.
,
2005
, “
Ligand-Based Targeting Approaches to Drug Delivery
,”
Design of Controlled Release Drug Delivery Systems
,
McGraw Hill Professional
, New York, pp.
375
403
.
7.
Ding
,
L.
,
Samuel
,
J.
,
MacLean
,
G. D.
,
Noujaim
,
A. A.
,
Diener
,
E.
, and
Longenecker
,
B. M.
,
1990
, “
Effective Drug-Antibody Targeting Using a Novel Monoclonal Antibody Against the Proliferative Compartment of Mammalian Squamous Carcinomas
,”
Cancer Immunol. Immunother.
,
32
(
2
), pp.
105
109
.10.1007/BF01754206
8.
Imura
,
Y.
,
Stassen
,
J. M.
,
Kurokawa
,
T.
,
Iwasa
,
S.
,
Lijnen
,
H. R.
, and
Collen
,
D.
,
1992
, “
Thrombolytic and Pharmacokinetic Properties of an Immunoconjugate of Single-Chain Urokinase-Type Plasminogen Activator (u-PA) and a Bispecific Monoclonal Antibody Against Fibrin and Against u-PA in Baboons
,”
Blood
,
79
(
9
), pp.
2322
2329
.
9.
Ringsdorf
,
H.
,
1975
, “
Structure and Properties of Pharmacologically Active Polymers
,”
J. Polym. Sci., Polym. Symp.
,
51
(
1
), pp.
135
153
.10.1002/polc.5070510111
10.
Vitetta
,
E. S.
,
Krolik
,
K. A.
,
Miyama-Inaba
,
M.
,
Cushley
,
W.
, and
Uhr
,
J. W.
,
1983
, “
Immunotoxins: A New Approach to Cancer Therapy
,”
Science
,
219
(
4585
), pp.
644
650
.10.1126/science.6218613
11.
Torchilin
,
V. P.
, and
Klibanov
,
A. L.
,
1993
, “
pH-Sensitive Liposomes
,”
J. Liposome Res.
,
3
(
2
), pp.
201
255
.10.3109/08982109309148213
12.
Weinstein
,
J. N.
,
Magin
,
R. L.
,
Yatvin
,
M. B.
, and
Zaharko
,
D.
,
1979
, “
Liposomes and Local Hyperthermia: Selective Delivery of Methotrexate to Heated Tumors
,”
Science
,
204
(
4389
), pp.
188
191
.10.1126/science.432641
13.
Berry
,
C. C.
,
2009
, “
Progress in Functionalization of Magnetic Nanoparticles for Applications in Biomedicine
,”
J. Phys. D: Appl. Phys.
,
42
(
22
), p.
224003
.10.1088/0022-3727/42/22/224003
14.
Gajjar
,
S. K.
,
Sailor
,
G. U.
,
Seth
,
A. K.
, and
Patel
,
P. B.
,
2011
, “
A Review on Targeted Drug Delivery: Magnetic Drug Delivery System
,”
J. Pharm. Sci. Bioscientific Res.
,
1
(
2
), pp.
125
133
.
15.
McBain
,
S. C.
,
Yiu
,
H. H.
, and
Dobson
,
J.
,
2008
, “
Magnetic Nanoparticles for Gene and Drug Delivery
,”
Int. J. Nanomed.
,
3
(
2
), pp.
169
180
.
16.
O'Grady
,
K.
,
2009
, “
Progress in Applications of Magnetic Nanoparticles in Biomedicine
,”
J. Phys. D: Appl. Phys.
,
42
(
22
), p.
220301
.10.1088/0022-3727/42/22/220301
17.
Pankhurst
,
Q. A.
,
Connolly
,
J.
,
Jones
,
S. K.
, and
Dobson
,
J.
,
2003
, “
Applications of Magnetic Nanoparticles in Biomedicine
,”
J. Phys. D: Appl. Phys.
,
36
(
13
), pp.
R167
R181
.10.1088/0022-3727/36/13/201
18.
Pankhurst
,
Q. A.
,
Thanh
,
N. K. T.
,
Jones
,
S. K.
, and
Dobson
,
J.
,
2009
, “
Progress in Applications of Magnetic Nanoparticles in Biomedicine
,”
J. Phys. D: Appl. Phys.
,
42
(
22
), p.
224001
.10.1088/0022-3727/42/22/224001
19.
Roca
,
A. G.
,
Costo
,
R.
,
Rebolledo
,
A. F.
,
Veintemillas-Verdaguer
,
S.
,
Tartaj
,
P.
,
Gonzalez-Carreno
,
T.
,
Morales
,
M. P.
, and
Serna
,
C. J.
,
2009
, “
Progress in the Preparation of Magnetic Nanoparticles for Applications in Biomedicine
,”
J. Phys. D: Appl. Phys.
,
42
(
22
), p.
224002
.10.1088/0022-3727/42/22/224002
20.
Kleinstreuer
,
C.
, and
Zhang
,
Z.
,
2003
, “
Targeted Drug Aerosol Deposition Analysis for a Four-Generation Lung Airway Model With Hemispherical Tumors
,”
ASME J. Biomech. Eng.
,
125
(
2
), pp.
197
206
.10.1115/1.1543548
21.
Kleinstreuer
,
C.
,
2006
,
Biofluid Dynamics: Principles and Selected Applications
,
CRC Press
, Boca Raton, FL.
22.
Kleinstreuer
,
C.
,
Zhang
,
Z.
, and
Donohue
,
J. F.
,
2008
, “
Targeted Drug-Aerosol Delivery in the Human Respiratory System
,”
Annu. Rev. Biomed. Eng.
,
10
, pp.
195
220
.10.1146/annurev.bioeng.10.061807.160544
23.
Basciano
,
C. A.
,
Kleinstreuer
,
C.
,
Kennedy
,
A. S.
,
Dezarn
,
W. A.
, and
Childress
,
E.
,
2010
, “
Computer Modeling of Controlled Microsphere Release and Targeting in a Representative Hepatic Artery System
,”
Ann. Biomed. Eng.
,
38
(
5
), pp.
1862
1879
.10.1007/s10439-010-9955-z
24.
Kennedy
,
A. S.
,
Kleinstreuer
,
C.
,
Basciano
,
C. A.
, and
Dezarn
,
W. A.
,
2010
, “
Computer Modeling of Yttrium-90-Microsphere Transport in the Hepatic Arterial Tree to Improve Clinical Outcomes
,”
Int. J. Radiat. Oncol., Biol., Phys.
,
76
(
2
), pp.
631
637
.10.1016/j.ijrobp.2009.06.069
25.
Kleinstreuer
,
C.
,
Basciano
,
C. A.
,
Childress
,
E. M.
, and
Kennedy
,
A. S.
,
2012
, “
A New Catheter for Tumor Targeting With Radioactive Microspheres in Representative Hepatic Artery Systems–Part I: Impact of Catheter Presence on Local Blood Flow and Microsphere Delivery
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051004
.10.1115/1.4006684
26.
Childress
,
E. M.
,
Kleinstreuer
,
C.
, and
Kennedy
,
A. S.
,
2012
, “
A New Catheter for Tumor-Targeting With Radioactive Microspheres in Representative Hepatic Artery Systems–Part II: Solid Tumor-Targeting in a Patient-Inspired Hepatic Artery System
,”
J. Biochem. Toxicol.
,
134
(
5
), p.
051005
.
27.
Childress
,
E. M.
,
2013
, “
Computational Particle Hemodynamics With Applications to Optimal Liver-Tumor Targeting
,” Ph.D. thesis, North Carolina State University, NC.
28.
Richards
,
A. L.
,
Kleinstreuer
,
C.
,
Kennedy
,
S.
,
Childress
,
E.
, and
Buckner
,
G. D.
,
2012
, “
Experimental Microsphere Targeting in a Representative Hepatic Artery System
,”
IEEE Trans. Biomed. Eng.
,
59
(
1
), pp.
198
204
.10.1109/TBME.2011.2170195
29.
Banerjee
,
M. K.
,
Datta
,
A.
, and
Ganguly
,
R.
,
2010
, “
Magnetic Drug Targeting in Partly Occluded Blood Vessels Using Magnetic Microspheres
,”
ASME J. Nanotechnol. Eng. Med.
,
1
(
4
), p.
041005
.10.1115/1.4002418
30.
Kenjeres
,
S.
,
2008
, “
Numerical Analysis of Blood Flow in Realistic Arteries Subjected to Strong Non-Uniform Magnetic Fields
,”
Int. J. Heat Fluid Flow
,
29
(
3
), pp.
752
764
.10.1016/j.ijheatfluidflow.2008.02.014
31.
Liu
,
H. D.
,
Wang
,
S. G.
, and
Xu
,
W.
,
2009
, “
Process Modeling of Ferrofluids Flow for Magnetic Targeting Drug Delivery
,”
Chin. J. Mech. Eng.
,
22
(
3
), pp.
440
445
.10.3901/CJME.2009.03.440
32.
Nacev
,
A.
,
Beni
,
C.
,
Bruno
,
O.
, and
Shapiro
,
B.
,
2011
, “
The Behaviors of Ferromagnetic Nano-Particles in and Around Blood Vessels Under Applied Magnetic Fields
,”
J. Magn. Magn. Mater.
,
323
(
6
), pp.
651
668
.10.1016/j.jmmm.2010.09.008
33.
Cherry
,
E. M.
,
Maxim
,
P. G.
, and
Eaton
,
J. K.
,
2010
, “
Particle Size, Magnetic Field, and Blood Velocity Effects on Particle Retention in Magnetic Drug Targeting
,”
Med. Phys.
,
37
(
1
), pp.
175
182
.10.1118/1.3271344
34.
Mathieu
,
J. B.
, and
Martel
,
S.
,
2010
, “
Steering of Aggregating Magnetic Microparticles Using Propulsion Gradients Coils in an MRI Scanner
,”
Magn. Reson. Med.
,
63
(
5
), pp.
1336
1345
.10.1002/mrm.22279
35.
Moore
,
S.
,
David
,
T.
,
Chase
,
J. G.
,
Arnold
,
J.
, and
Fink
,
J.
,
2006
, “
3D Models of Blood Flow in the Cerebral Vasculature
,”
J. Biomech.
,
39
(
8
), pp.
1454
1463
.10.1016/j.jbiomech.2005.04.005
36.
Zamir
,
M.
,
1999
, “
On Fractal Properties of Arterial Trees
,”
J. Theor. Biol.
,
197
(
4
), pp.
517
526
.10.1006/jtbi.1998.0892
37.
Bui
,
A.
,
Sutalo
,
I. D.
,
Manasseh
,
R.
, and
Liffman
,
K.
,
2009
, “
Dynamics of Pulsatile Flow in Fractal Models of Vascular Branching Networks
,”
Med. Biol. Eng. Comput.
,
47
(
7
), pp.
763
772
.10.1007/s11517-009-0492-6
38.
Olufsen
,
M. S.
,
1999
, “
Structured Tree Outflow Condition for Blood Flow in Larger Systemic Arteries
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
276
(
1
), pp.
H257
H268
.
39.
Steele
,
B. N.
,
Olufsen
,
M. S.
, and
Taylor
,
C. A.
,
2007
, “
Fractal Network Model for Simulating Abdominal and Lower Extremity Blood Flow During Resting and Exercise Conditions
,”
Comput. Methods Biomech. Biomed. Eng.
,
10
(
1
), pp.
39
51
.10.1080/10255840601068638
40.
Uylings
,
H. B. M.
,
1977
, “
Optimization of Diameters and Bifurcation Angles in Lung and Vascular Tree Structures
,”
Bull. Math. Biol.
,
39
(
5
), pp.
509
520
.10.1007/BF02461198
41.
Kamiya
,
A.
, and
Togawa
,
T.
,
1972
, “
Optimal Branching Structure of the Vascular Tree
,”
Bull. Math. Biol.
,
34
(
4
), pp.
431
438
.
42.
Schreiner
,
W.
,
Neumann
,
M.
,
Neumann
,
F.
,
Roedler
,
S. M.
,
End
,
A.
,
Buxbaum
,
P.
,
Muller
,
M. R.
, and
Spieckermann
,
P.
,
1994
, “
The Branching Angles in Computer-Generated Optimized Models of Arterial Trees
,”
J. Gen. Physiol.
,
103
(
6
), pp.
975
989
.10.1085/jgp.103.6.975
43.
Moore
,
S.
,
2008
,
Computational 3D Modeling of Hemodynamics in the Circle of Willis
, University of Canterbury, Christchurch, New Zealand.
44.
Gijsen
,
F. J.
,
Allanic
,
E.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90 Degrees Curved Tube
,”
J. Biomech.
,
32
(
7
), pp.
705
713
.10.1016/S0021-9290(99)00014-7
45.
Gijsen
,
F. J.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Steady Flow in a Carotid Bifurcation Model
,”
J. Biomech.
,
32
(
6
), pp.
601
608
.10.1016/S0021-9290(99)00015-9
46.
Enzmann
,
D. R.
,
Ross
,
M. R.
,
Marks
,
M. P.
, and
Pelc
,
H. J.
,
1994
, “
Blood Flow in Major Cerebral Arteries Measured by Phase-Contrast Cine MR
,”
Am. J. Neuroradiology
,
15
(
1
), pp.
123
129
.
47.
Moghimi
,
S. M.
,
Hunter
,
A. C.
, and
Murray
,
J. C.
,
2001
, “
Long-Circulating and Target-Specific Nanoparticles: Theory to Practice
,”
Pharm. Rev.
,
53
(
2
), pp.
283
318
.
48.
Fang
,
C.
,
Shi
,
B.
,
Pei
,
Y. Y.
,
Hong
,
M. H.
,
Wu
,
J.
, and
Chen
,
H. Z.
,
2006
, “
in vivo Tumor Targeting of Tumor Necrosis Factor-Alpha-Loaded Stealth Nanoparticles: Effect of Mepeg Molecular Weight and Particle Size
,”
Eur. J. Pharm. Sci.
,
27
(
1
), pp.
27
36
.10.1016/j.ejps.2005.08.002
49.
Shridhar
,
G.
, and
Katz
,
J.
,
1995
, “
Drag and Lift Forces on Microscopic Bubbles Entrained by a Vortex
,”
Phys. Fluids
,
7
(
2
), pp.
389
399
.10.1063/1.868637
50.
Ettenson
,
D. S.
, and
Edelman
,
E. R.
,
2000
, “
Local Drug Delivery: An Emerging Approach in the Treatment of Restenosis
,”
Vasc. Med.
,
5
(2), pp.
97
102
.10.1177/1358836X0000500206
51.
Tabassum
,
N.
,
Sofi
,
A.
, and
Khuroo
,
T.
,
2011
, “
Microneedle Technology: A New Drug Delivery System
,”
Int. J. Res. Pharm. Biomed. Sci.
,
2
(
1
), pp.
59
62
.
You do not currently have access to this content.