For newborns diagnosed with pulmonary atresia or severe pulmonary stenosis leading to insufficient pulmonary blood flow, cyanosis can be mitigated with placement of a modified Blalock–Taussig shunt (MBTS) between the innominate and pulmonary arteries. In some clinical scenarios, patients receive two systemic-to-pulmonary connections, either by leaving the patent ductus arteriosus (PDA) open or by adding an additional central shunt (CS) in conjunction with the MBTS. This practice has been motivated by the thinking that an additional source of pulmonary blood flow could beneficially increase pulmonary flow and provide the security of an alternate pathway in case of thrombosis. However, there have been clinical reports of premature shunt occlusion when more than one shunt is employed, leading to speculation that multiple shunts may in fact lead to unfavorable hemodynamics and increased mortality. In this study, we hypothesize that multiple shunts may lead to undesirable flow competition, resulting in increased residence time (RT) and elevated risk of thrombosis, as well as pulmonary overcirculation. Computational fluid dynamics-based multiscale simulations were performed to compare a range of shunt configurations and systematically quantify flow competition, pulmonary circulation, and other clinically relevant parameters. In total, 23 cases were evaluated by systematically changing the PDA/CS diameter, pulmonary vascular resistance (PVR), and MBTS position and compared by quantifying oxygen delivery (OD) to the systemic and coronary beds, wall shear stress (WSS), oscillatory shear index (OSI), WSS gradient (WSSG), and RT in the pulmonary artery (PA), and MBTS. Results showed that smaller PDA/CS diameters can lead to flow conditions consistent with increased thrombus formation due to flow competition in the PA, and larger PDA/CS diameters can lead to insufficient OD due to pulmonary hyperfusion. In the worst case scenario, it was found that multiple shunts can lead to a 160% increase in RT and a 10% decrease in OD. Based on the simulation results presented in this study, clinical outcomes for patients receiving multiple shunts should be critically investigated, as this practice appears to provide no benefit in terms of OD and may actually increase thrombotic risk.

References

1.
Blalock
,
A.
, and
Taussig
,
H. B.
,
1945
, “
The Surgical Treatment of Malformations of the Heart
,”
J. Am. Med. Assoc.
,
128
(
3
), pp.
189
202
.10.1001/jama.1945.02860200029009
2.
Tamisier
,
D.
,
Vouhe
,
P.
,
Vernant
,
F.
,
Leca
,
F.
,
Massot
,
C.
, and
Neveux
,
J.
,
1990
, “
Modified Blalock–Taussig Shunts: Results in Infants Less Than 3 Months of Age
,”
Ann. Thorac. Surg.
,
49
(
5
), pp.
797
801
.10.1016/0003-4975(90)90026-3
3.
Glenn
,
W. W.
,
1958
, “
Circulatory Bypass of the Right Side of the Heart: Shunt Between Superior Vena Cava and Distal Right Pulmonary Artery-Report of Clinical Application
,”
N. Engl. J. Med.
,
259
(
3
), pp.
117
120
.10.1056/NEJM195807172590304
4.
Fontan
,
F.
, and
Baudet
,
E.
,
1971
, “
Surgical Repair of Tricuspid Atresia
,”
Thorax
,
26
(
3
), pp.
240
248
.10.1136/thx.26.3.240
5.
Norwood
,
W.
,
Jacobs
,
M.
, and
Murphy
,
J.
,
1992
, “
Fontan Procedure for Hypoplastic Left Heart Syndrome
,”
Ann. Thorac. Surg.
,
54
(
6
), pp.
1025
1030
.10.1016/0003-4975(92)90065-C
6.
Shachar
,
G. B.
,
Fuhrman
,
B. P.
,
Wang
,
Y.
,
Lucas
,
R.
, and
Lock
,
J. E.
,
1982
, “
Rest and Exercise Hemodynamics After the Fontan Procedure
,”
Circulation
,
65
(
6
), pp.
1043
1048
.10.1161/01.CIR.65.6.1043
7.
Gaynor
,
J. W.
,
Mahle
,
W. T.
,
Cohen
,
M. I.
,
Ittenbach
,
R. F.
,
DeCampli
,
W. M.
,
Steven
,
J. M.
,
Nicolson
,
S. C.
, and
Spray
,
T. L.
,
2002
, “
Risk Factors for Mortality After the Norwood Procedure
,”
Eur. J. Cardiothorac. Surg.
,
22
(
1
), pp.
82
89
.10.1016/S1010-7940(02)00198-7
8.
Bartram
,
U.
,
Grünenfelder
,
J.
, and
Praagh
,
R. V.
,
1997
, “
Causes of Death After the Modified Norwood Procedure: A Study of 122 Postmortem Cases
,”
Ann. Thorac. Surg.
,
64
(
6
), pp.
1795
1802
.10.1016/S0003-4975(97)01041-2
9.
Corno
,
A.
,
Mazzera
,
E.
,
Marino
,
B.
,
Parisi
,
F.
, and
Marcelletti
,
C.
,
1986
, “
Simultaneous Patency of Ductus Arteriosus and Surgical Shunt in Pulmonary Atresia With Intact Ventricular Septum: A Cause of Acute Myocardial Failure?
,”
Scand. Cardiovasc. J.
,
20
(
2
), pp.
123
127
.10.3109/14017438609106488
10.
Zahorec
,
M.
,
Hrubsova
,
Z.
,
Skrak
,
P.
,
Poruban
,
R.
,
Nosal
,
M.
, and
Kovacikova
,
L.
,
2011
, “
A Comparison of Blalock–Taussig Shunts With and Without Closure of the Ductus Arteriosus in Neonates With Pulmonary Atresia
,”
Ann. Thorac. Surg.
,
92
(
2
), pp.
653
658
.10.1016/j.athoracsur.2011.04.008
11.
Migliavacca
,
F.
,
Pennati
,
G.
,
Dubini
,
G.
,
Fumero
,
R.
,
Pietrabissa
,
R.
,
Urcelay
,
G.
,
Bove
,
E.
,
Hsia
,
T.
, and
de Leval
,
M.
,
2001
, “
Modeling of the Norwood Circulation: Effects of Shunt Size, Vascular Resistances, and Heart Rate
,”
Am. J. Physiol.: Heart Circ. Physiol.
,
280
(
5
), pp.
H2076
H2086
.
12.
Pennati
,
G.
,
Migliavacca
,
F.
,
Dubini
,
G.
, and
Bove
,
E.
,
2010
, “
Modeling of Systemic-to-Pulmonary Shunts in Newborns With a Univentricular Circulation: State of the Art and Future Directions
,”
Prog. Pediatr. Cardiol.
,
30
(
1–2
), pp.
23
29
.10.1016/j.ppedcard.2010.09.004
13.
Esmaily-Moghadam
,
M.
,
Migliavacca
,
F.
,
Vignon-Clementel
,
I.
,
Hsia
,
T.
, and
Marsden
,
A.
,
2012
, “
Optimization of Shunt Placement for the Norwood Surgery Using Multi-Domain Modeling
,”
ASME J. Biomech. Eng.
,
134
(
5
), p.
051002
.10.1115/1.4006814
14.
Esmaily-Moghadam
,
M.
,
Hsia
,
T.-Y.
, and
Marsden
,
A.
,
2014
, “
The Assisted Bidirectional Glenn: A Novel Surgical Approach for First Stage Single Ventricle Heart Palliation
,”
J. Thorac. Cardiovasc. Surg.
(in press).10.1016/j.jtcvs.2014.10.035
15.
Bove
,
E.
,
Migliavacca
,
F.
,
de Leval
,
M.
,
Balossino
,
R.
,
Pennati
,
G.
,
Lloyd
,
T.
,
Khambadkone
,
S.
,
Hsia
,
T.
, and
Dubini
,
G.
,
2008
, “
Use of Mathematic Modeling to Compare and Predict Hemodynamic Effects of the Modified Blalock–Taussig and Right Ventricle-Pulmonary Artery Shunts for Hypoplastic Left Heart Syndrome
,”
J. Thorac. Cardiovasc. Surg.
,
136
(
2
), pp.
312
320
.e2.10.1016/j.jtcvs.2007.04.078
16.
Laganà
,
K.
,
Balossino
,
R.
,
Migliavacca
,
F.
,
Pennati
,
G.
,
Bove
,
E.
,
de Leval
,
M.
, and
Dubini
,
G.
,
2005
, “
Multiscale Modeling of the Cardiovascular System: Application to the Study of Pulmonary and Coronary Perfusions in the Univentricular Circulation
,”
J. Biomech.
,
38
(
5
), pp.
1129
1141
.10.1016/j.jbiomech.2004.05.027
17.
Pennati
,
G.
,
Migliavacca
,
F.
,
Gervaso
,
F.
, and
Dubini
,
G.
,
2004
, “
Assessment by Computational and In Vitro Studies of the Blood Flow Rate Through Modified Blalock–Taussig Shunts
,”
Cardiol. Young
,
14
(
Suppl. 3
), pp.
24
29
.10.1017/S1047951104006511
18.
Pennati
,
G.
,
Fiore
,
G. B.
,
Migliavacca
,
F.
,
Laganà
,
K.
,
Fumero
,
R.
, and
Dubini
,
G.
,
2001
, “
In Vitro Steady-Flow Analysis of Systemic-to-Pulmonary Shunt Haemodynamics
,”
J. Biomech.
,
34
(
1
), pp.
23
30
.10.1016/S0021-9290(00)00167-6
19.
Esmaily-Moghadam
,
M.
,
Vignon-Clementel
,
I.
,
Figliola
,
R.
, and
Marsden
,
A.
,
2013
, “
A Modular Numerical Method for Implicit 0D/3D Coupling in Cardiovascular Finite Element Simulations
,”
J. Comput. Phys.
,
224
, pp.
63
79
.10.1016/j.jcp.2012.07.035
20.
Bluestein
,
D.
,
Niu
,
L.
,
Schoephoerster
,
R.
, and
Dewanjee
,
M.
,
1997
, “
Fluid Mechanics of Arterial Stenosis: Relationship to the Development of Mural Thrombus
,”
Ann. Biomed. Eng.
,
25
(
2
), pp.
344
356
.10.1007/BF02648048
21.
Esmaily-Moghadam
,
M.
,
Hsia
,
T.-Y.
, and
Marsden
,
A.
,
2013
, “
A Non-Discrete Method for Computation of Residence Time in Fluid Mechanics Simulations
,”
Phys. Fluids
,
25
(
11
), p.
110802
.10.1063/1.4819142
22.
Kunov
,
M.
,
Steinman
,
D.
, and
Ethier
,
C.
,
1996
, “
Particle Volumetric Residence Time Calculations in Arterial Geometries
,”
ASME J. Biomech. Eng.
,
118
(
2
), pp.
158
164
.10.1115/1.2795954
23.
Suh
,
G.
,
Les
,
A.
,
Tenforde
,
A.
,
Shadden
,
S.
,
Spilker
,
R.
,
Yeung
,
J.
,
Cheng
,
C.
,
Herfkens
,
R.
,
Dalman
,
R.
, and
Taylor
,
C.
,
2011
, “
Quantification of Particle Residence Time in Abdominal Aortic Aneurysms Using Magnetic Resonance Imaging and Computational Fluid Dynamics
,”
Ann. Biomed. Eng.
,
39
(
2
), pp.
864
883
.10.1007/s10439-010-0202-4
24.
Schmidt
,
J.
,
Delp
,
S.
,
Sherman
,
M.
,
Taylor
,
C.
,
Pande
,
V.
, and
Altman
,
R.
,
2008
, “
The Simbios National Center: Systems Biology in Motion
,”
Proc. IEEE Inst. Electr. Electron Eng.
,
96
(
8
), pp.
1266
1280
.10.1109/JPROC.2008.925454
25.
Valant
,
A. Z.
,
Žiberna
,
L.
,
Papaharilaou
,
Y.
,
Anayiotos
,
A.
, and
Georgiou
,
G.
,
2011
, “
The Influence of Temperature on Rheological Properties of Blood Mixtures With Different Volume Expanders-Implications in Numerical Arterial Hemodynamics Simulations
,”
Rheol. Acta
,
50
(
4
), pp.
389
402
.10.1007/s00397-010-0518-x
26.
Jansen
,
K.
,
Whiting
,
C.
, and
Hulbert
,
G.
,
2000
, “
A Generalized-[Alpha] Method for Integrating the Filtered Navier–Stokes Equations With a Stabilized Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
,
190
(
3–4
), pp.
305
319
.10.1016/S0045-7825(00)00203-6
27.
Franca
,
L.
, and
Frey
,
S.
,
1992
, “
Stabilized Finite Element Methods: II. The Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
99
(
2–3
), pp.
209
233
.10.1016/0045-7825(92)90041-H
28.
Brooks
,
A.
, and
Hughes
,
T.
,
1982
, “
Streamline Upwind/Petrov–Galerkin Formulations for Convection Dominated Flows With Particular Emphasis on the Incompressible Navier–Stokes Equations
,”
Comput. Methods Appl. Mech. Eng.
,
32
(
1–3
), pp.
199
259
.10.1016/0045-7825(82)90071-8
29.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A.
,
2014
, “
A Bi-Partitioned Iterative Algorithm for Solving Linear Systems Arising From Incompressible Flow Problems
,”
Comput. Methods Appl. Mech. Eng.
(in press).10.1016/j.cma.2014.11.033
30.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A. L.
,
2013
, “
A New Preconditioning Technique for Implicitly Coupled Multidomain Simulations With Applications to Hemodynamics
,”
Comput. Mech.
,
52
(
5
), pp.
1141
1152
.10.1007/s00466-013-0868-1
31.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
, and
Marsden
,
A.
,
2014
, “
Impact of Data Distribution on the Parallel Performance of Iterative Linear Solvers With Emphasis on CFD of Incompressible Flows
,”
Comput. Mech.
(published online).10.1007/s00466-014-1084-3
32.
Esmaily-Moghadam
,
M.
,
Bazilevs
,
Y.
,
Hsia
,
T.
,
Vignon-Clementel
,
I.
, and
Marsden
,
A.
,
2011
, “
A Comparison of Outlet Boundary Treatments for Prevention of Backflow Divergence With Relevance to Blood Flow Simulations
,”
Comput. Mech.
,
48
(
3
), pp.
277
291
.10.1007/s00466-011-0599-0
33.
Bazilevs
,
Y.
,
Gohean
,
J.
,
Hughes
,
T.
,
Moser
,
R.
, and
Zhang
,
Y.
,
2009
, “
Patient-Specific Isogeometric Fluid-Structure Interaction Analysis of Thoracic Aortic Blood Flow due to Implantation of the Jarvik 2000 Left Ventricular Assist Device
,”
Comput. Methods Appl. Mech. Eng.
,
198
(
45–46
), pp.
3534
3550
.10.1016/j.cma.2009.04.015
34.
Long
,
C.
,
Esmaily-Moghadam
,
M.
,
Marsden
,
A.
, and
Bazilevs
,
Y.
,
2014
, “
Computation of Residence Time in the Simulation of Pulsatile Ventricular Assist Devices
,”
Comput. Mech.
,
54
(
4
), pp.
911
919
.10.1007/s00466-013-0931-y
35.
Figueroa
,
C.
,
2006
, “
A Coupled-Momentum Method to Model Blood Flow and Vessel Deformation in Human Arteries: Applications in Disease Research and Simulation-Based Medical Planning
,” Ph.D. thesis, Stanford University.
36.
He
,
X.
, and
Ku
,
D.
,
1996
, “
Pulsatile Flow in the Human Left Coronary Artery Bifurcation: Average Conditions
,”
ASME J. Biomech. Eng.
,
118
(
1
), pp.
74
82
.10.1115/1.2795948
37.
Taylor
,
C.
,
Hughes
,
T.
, and
Zarins
,
C.
,
1999
, “
Effect of Exercise on Hemodynamic Conditions in the Abdominal Aorta
,”
J. Vasc. Surg.
,
29
(
6
), pp.
1077
1089
.10.1016/S0741-5214(99)70249-1
38.
Barnea
,
O.
,
Santamore
,
W.
,
Rossi
,
A.
,
Salloum
,
E.
,
Chien
,
S.
, and
Austin
,
E.
,
1998
, “
Estimation of Oxygen Delivery in Newborns With a Univentricular Circulation
,”
Circulation
,
98
(
14
), pp.
1407
1413
.10.1161/01.CIR.98.14.1407
39.
Holzapfel
,
G. A.
,
2000
,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
John Wiley & Sons, Ltd.
,
West Sussex, UK
.
40.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Schwaab
,
M.
, and
Conklin
,
B. S.
,
2008
, “
Arterial Fluid Mechanics Modeling With the Stabilized Space–Time Fluid–Structure Interaction Technique
,”
Int. J. Numer. Methods Fluids
,
57
(
5
), pp.
601
629
.10.1002/fld.1633
41.
Long
,
C.
,
Hsu
,
M.
,
Bazilevs
,
Y.
, and
Feinstein
,
J.
,
2012
, “
A. Marsden, Fluid-Structure Interaction Simulations of the Fontan Procedure Using Variable Wall Properties
,”
Int. J. Numer. Methods Biomed. Eng.
,
28
(
5
), pp.
513
527
.10.1002/cnm.1485
42.
Coogan
,
J. S.
,
Humphrey
,
J. D.
, and
Figueroa
,
C. A.
,
2013
, “
Computational Simulations of Hemodynamic Changes Within Thoracic, Coronary, and Cerebral Arteries Following Early Wall Remodeling in Response to Distal Aortic Coarctation
,”
Biomech. Model. Mechanobiol.
,
12
(
1
), pp.
79
93
.10.1007/s10237-012-0383-x
43.
Bazilevs
,
Y.
,
Hsu
,
M.
,
Benson
,
D.
,
Sankaran
,
S.
, and
Marsden
,
A.
,
2009
, “
Computational Fluid-Structure Interaction: Methods and Application to a Total Cavopulmonary Connection
,”
Comput. Mech.
,
45
(
1
), pp.
77
89
.10.1007/s00466-009-0419-y
44.
Bazilevs
,
Y.
,
Calo
,
V.
,
Hughes
,
T.
, and
Zhang
,
Y.
,
2008
, “
Isogeometric Fluid-Structure Interaction: Theory, Algorithms, and Computations
,”
Comput. Mech.
,
43
(
1
), pp.
3
37
.10.1007/s00466-008-0315-x
45.
Tezduyar
,
T. E.
,
Sathe
,
S.
,
Keedy
,
R.
, and
Stein
,
K.
,
2006
, “
Space-Time Finite Element Techniques for Computation of Fluid-Structure Interactions
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
17
), pp.
2002
2027
.10.1016/j.cma.2004.09.014
46.
Tezduyar
,
T.
,
Aliabadi
,
S.
,
Behr
,
M.
,
Johnson
,
A.
, and
Mittal
,
S.
,
1993
, “
Parallel Finite-Element Computation of 3D Flows
,”
Computer
,
26
(
10
), pp.
27
36
.10.1109/2.237441
47.
Stein
,
K.
,
Tezduyar
,
T.
, and
Benney
,
R.
,
2003
, “
Mesh Moving Techniques for Fluid-Structure Interactions With Large Displacements
,”
ASME J. Appl. Mech.
,
70
(
1
), pp.
58
63
.10.1115/1.1530635
48.
Rouleau
,
L.
,
Farcas
,
M.
,
Tardif
,
J.
,
Mongrain
,
R.
, and
Leask
,
R.
,
2010
, “
Endothelial Cell Morphologic Response to Asymmetric Stenosis Hemodynamics: Effects of Spatial Wall Shear Stress Gradients
,”
ASME J. Biomech. Eng.
,
132
(
8
), p.
081013
.10.1115/1.4001891
49.
Xu
,
Z.
,
Chen
,
N.
,
Kamocka
,
M.
,
Rosen
,
E.
, and
Alber
,
M.
,
2008
, “
A Multiscale Model of Thrombus Development
,”
J. R. Soc., Interface
,
5
(
24
), pp.
705
722
.10.1098/rsif.2007.1202
50.
Meng
,
H.
,
Wang
,
Z.
,
Hoi
,
Y.
,
Gao
,
L.
,
Metaxa
,
E.
,
Swartz
,
D.
, and
Kolega
,
J.
,
2007
, “
Complex Hemodynamics at the Apex of an Arterial Bifurcation Induces Vascular Remodeling Resembling Cerebral Aneurysm Initiation
,”
Stroke
,
38
(
6
), pp.
1924
1931
.10.1161/STROKEAHA.106.481234
51.
Turitto
,
V.
, and
Hall
,
C.
,
1998
, “
Mechanical Factors Affecting Hemostasis and Thrombosis
,”
Thromb. Res.
,
92
(
6, Supplement 2
), pp.
S25
S31
.10.1016/S0049-3848(98)00157-1
52.
Holme
,
P.
,
Orvim
,
U.
,
Hamers
,
M.
,
Solum
,
N.
,
Brosstad
,
F.
,
Barstad
,
R.
, and
Sakariassen
,
K.
,
1997
, “
Shear-Induced Platelet Activation and Platelet Microparticle Formation at Blood Flow Conditions as in Arteries With a Severe Stenosis
,”
Arterioscler., Thromb., Vasc. Biol.
,
17
(
4
), pp.
646
653
.10.1161/01.ATV.17.4.646
53.
Yin
,
W.
,
Shanmugavelayudam
,
S.
, and
Rubenstein
,
D.
,
2011
, “
The Effect of Physiologically Relevant Dynamic Shear Stress on Platelet and Endothelial Cell Activation
,”
Thromb. Res.
,
127
(
3
), pp.
235
241
.10.1016/j.thromres.2010.11.021
You do not currently have access to this content.